Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Meningiomas are the most common primary central nervous system tumors. 20-30% of these tumors are considered high-grade and associated with poor prognosis and high recurrence rates. Despite the high occurrence of meningiomas, there are no FDA-approved compounds for the treatment of these tumors.
Methods: In this study, we screened patient-cultured meningiomas with an epigenetic compound library to identify targetable mechanisms for the potential treatment of these tumors. Meningioma cell cultures were generated directly from surgically resected patient tumors and were cultured on a neural matrix. Cells were treated with a library of compounds meant to target epigenetic functions.
Results: Although each tumor displayed a unique compound sensitivity profile, Panobinostat, LAQ824, and HC toxin were broadly effective across most tumors. These three compounds are broad-spectrum Histone Deacetylase (HDAC) inhibitors which target class I, IIa, and IIb HDACs. Panobinostat was identified as the most broadly effective compound, capable of significantly decreasing the average cell viability of the sample cohort, regardless of tumor grade, recurrence, radiation, and patient gender.
Conclusions: These findings strongly suggest an important role of HDACs in meningioma biology and as a targetable mechanism. Additional validation studies are necessary to confirm these promising findings, as well to identify an ideal HDAC inhibitor candidate to develop for clinical use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303324 | PMC |
http://dx.doi.org/10.3390/jcm10143150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!