We propose a methodological framework to support the development of personalized courses that improve patients' understanding of their condition and prescribed treatment. Inspired by Intelligent Tutoring Systems (ITSs), the framework uses an eLearning ontology to express domain and learner models and to create a course. We combine the ontology with a procedural reasoning approach and precompiled plans to operationalize a design across disease conditions. The resulting courses generated by the framework are personalized across four patient axes-condition and treatment, comprehension level, learning style based on the VARK (Visual, Aural, Read/write, Kinesthetic) presentation model, and the level of understanding of specific course content according to Bloom's taxonomy. Customizing educational materials along these learning axes stimulates and sustains patients' attention when learning about their conditions or treatment options. Our proposed framework creates a personalized course that prepares patients for their meetings with specialists and educates them about their prescribed treatment. We posit that the improvement in patients' understanding of prescribed care will result in better outcomes and we validate that the constructs of our framework are appropriate for representing content and deriving personalized courses for two use cases: anticoagulation treatment of an atrial fibrillation patient and lower back pain management to treat a lumbar degenerative disc condition. We conduct a mostly qualitative study supported by a quantitative questionnaire to investigate the acceptability of the framework among the target patient population and medical practitioners.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307382 | PMC |
http://dx.doi.org/10.3390/ijerph18147355 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!