Liquid-chromatography coupled to high resolution mass spectrometry (LC-HRMS) is currently the method of choice for untargeted metabolomic analysis. The availability of established protocols to achieve a high confidence identification of metabolites is crucial. The aim of this work is to describe the workflow that we have applied to build an Accurate Mass Retention Time (AMRT) database using a commercial metabolite library of standards. LC-HRMS analysis was carried out using a Vanquish Horizon UHPLC system coupled to a Q-Exactive Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific, Milan, Italy). The fragmentation spectra, obtained with 12 collision energies, were acquired for each metabolite, in both polarities, through flow injection analysis. Several chromatographic conditions were tested to obtain a protocol that yielded stable retention times. The adopted chromatographic protocol included a gradient separation using a reversed phase (Waters Acquity BEH C18) and a HILIC (Waters Acquity BEH Amide) column. An AMRT database of 518 compounds was obtained and tested on real plasma and urine samples analyzed in data-dependent acquisition mode. Our AMRT library allowed a level 1 identification, according to the Metabolomics Standards Initiative, of 132 and 124 metabolites in human pediatric plasma and urine samples, respectively. This library represents a starting point for future metabolomic studies in pediatric settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303579PMC
http://dx.doi.org/10.3390/molecules26144256DOI Listing

Publication Analysis

Top Keywords

plasma urine
12
accurate mass
8
mass retention
8
retention time
8
untargeted metabolomic
8
metabolomic analysis
8
amrt database
8
waters acquity
8
acquity beh
8
urine samples
8

Similar Publications

Globally, drug-impaired driving fatalities now exceed those from drunk driving, urging the need for on-site and roadside detection methods. In this study, a photothermal desorption and reagent-assisted low-temperature plasma ionization miniature ion trap mass spectrometer (PDRA-LTP-ITMS) was developed for on-site detection of drug-impaired driving. The pseudomultiple reaction monitoring (MRM) in PDRA-LTP-ITMS enables continuous ion selection during ion introduction and improved sensitivity to nearly 3-fold compared with the conventional full scan mode.

View Article and Find Full Text PDF

The valid method was developed for analyzing empagliflozin in serum/plasma/urine using a molecularly imprinted ghost polymer-solid-phase extraction approach (MISPE) with liquid chromatographic methodology. Methacrylic acid (MAA) was used as the monomer, 2,2 azobis isobutyronitrile as the initiator and ethylene glycol dimethacrylate as the cross-linker in the free radical polymerization procedure. Empagliflozin was loaded onto the polymer and eluted with 1 mL of a 9:1 MeOH:acetic acid solution.

View Article and Find Full Text PDF

A cost minimized immunoaffinity protocol was developed, which allows the direct purification of ERAs (urinary and recombinant human EPO, Darbepoetin, EPO-Fc, CERA) from human urine. The method applies magnetic beads and needs no covalent immobilization of the capture antibody. It requires only 10 mL of urine, 1 μg of anti-EPO antibody, and 25 μL of bead slurry.

View Article and Find Full Text PDF

Neurofilament light chain - Can it be measured in urine?

Clin Chim Acta

January 2025

Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul Jensens Boulevard 99 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University 8000 Aarhus C, Denmark.

Objective: This exploratory study investigates if neurofilament light chain (NfL) is excreted in the urine and whether this depends on plasma NfL (pNfL) levels and kidney function in terms of eGFR and U-albumin-creatinine ratio (uACR).

Methods: Using a computer algorithm, we identified excess urine and plasma from routine testing of uACR and eGFR in patients 45-50 years old. Up to 17 paired urine-plasma samples in each of six categories of kidney function defined by uACR and eGFR were analysed for NfL, and the urinary NfL-creatinine ratio (uNCR) was calculated to correct for urine dilution.

View Article and Find Full Text PDF

Noninvasive detection of BK virus, for early detection of BK polyomavirus-associated nephropathy post-renal transplantation, is currently an active subject of investigation. In this study, we developed and validated a novel risk score diagnostic assay (PymiR Score) based on measurements of three urine miRNAs, including BKV-related miRNA (bkv-miR-B1-5p), polyomavirus-related miRNA (bkv-miR-B1-3p) and renal tubular injury-related miRNA (miR-21-5p), by quantitative polymerase chain reaction. The limit of detection of the three miRNAs was 2 × 10 copies/mL, while the intra- and inter-assay coefficients of variation were in the ranges of 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!