The inhibition of certain digestive enzymes by target food matrices represents a new approach in the treatment of socially significant diseases. Proving the ability of fruits to inhibit such enzymes can support the inclusion of specific varieties in the daily diets of patients with diabetes, obesity, Alzheimer's disease, etc., providing them with much more than just valuable micro- and macromolecules. The current study aimed atidentifying and comparing the GC-MS metabolic profiles of eight peach varieties ("Filina", "Ufo 4, "Gergana", "Laskava", "July Lady", "Flat Queen", "Evmolpiya", and "Morsiani 90") grown in Bulgaria (local and introduced) and to evaluate the inhibitory potential of their extracts towards α-glucosidase, α-amylase, lipase, and acetylcholinesterase. In order to confirm samples' differences or similarities, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were also applied to the identified metabolites. The results provide important insights into the metabolomic profiles of the eight peach varieties and represent a first attempt to characterize the peels of the peach varieties with respect to α-glucosidase-, α-amylase-, lipase-, and acetylcholinesterase-inhibitory activities. All of the studied peach extracts displayed inhibitory activity towards α-glucosidase (IC: 125-757 mg/mL) and acetylcholinesterase (IC: 60-739 mg/mL), but none of them affected α-amylase activity. Five of the eight varieties showed inhibitory activity towards porcine pancreatic lipase (IC: 24-167 mg/mL). The obtained results validate the usefulness of peaches and nectarines as valuable sources of natural agents beneficial for human health, although further detailed investigation should be performed in order to thoroughly identify the enzyme inhibitors responsible for each activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306053PMC
http://dx.doi.org/10.3390/molecules26144183DOI Listing

Publication Analysis

Top Keywords

peach varieties
16
gc-ms metabolic
8
α-glucosidase- α-amylase-
8
α-amylase- lipase-
8
lipase- acetylcholinesterase-inhibitory
8
acetylcholinesterase-inhibitory activities
8
profiles peach
8
inhibitory activity
8
varieties
6
peach
5

Similar Publications

Sharka disease, caused by the plum pox virus (PPV), negatively impacts stone fruit production, resulting in economic losses. It has been demonstrated that grafting the almond ( (Miller) D.A.

View Article and Find Full Text PDF

, Encoding a Leucine-Rich Repeat Containing Receptor-like Protein, Is a Major Aphid () Resistance Gene in Sorghum.

Int J Mol Sci

December 2024

USDA-ARS Plant Science Research Laboratory, 1301N, Western Rd, Stillwater, OK 74075, USA.

Greenbug, , is one of the important cereal aphid pests of sorghum in the United States and other parts of the world. variety PI 607900 carries the resistance () gene that underlies plant resistance to greenbug biotype I (GBI). Now, the has been determined as the major gene conferring greenbug resistance based on the strong association of its presence with the resistance phenotype in sorghum.

View Article and Find Full Text PDF

Peach-associated luteovirus (PaLV) belongs to the genus Luteovirus, family Tombusviridae. To date, PaLV has only been reported in peach (Prunus persica) and its presence detected in the Republic of Georgia (Wu et al., 2017), China (Zhou et al.

View Article and Find Full Text PDF

Characterization of ZAT12 protein from Prunus persica: role in fruit chilling injury tolerance and identification of gene targets.

Planta

December 2024

Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.

PpZAT12, a transcription factor differentially expressed in peach varieties with distinct susceptibility tochilling injury (CI), is a potential candidate gene for CI tolerance by regulating several identified gene targets. ZAT (zinc finger of Arabidopsis thaliana) proteins play roles in multiple abiotic stress tolerance in Arabidopsis and other species; however, there are few reports on these transcription factors (TFs) in fruit crops. This study aimed to evaluate PpZAT12, a C2H2 TF up-regulated in peach fruit by a heat treatment applied before postharvest cold storage for reducing chilling injury (CI) symptoms.

View Article and Find Full Text PDF
Article Synopsis
  • The peach industry in the Panxi region of Sichuan has rapidly developed, with new varieties increasing acid content in high-altitude areas.
  • A study compared early-ripening peach varieties from high-altitude Xide County and low-altitude Longquanyi District, analyzing fruit quality and organic acid metabolism through metabolomic and transcriptomic methods.
  • Results indicated that high-altitude peaches, particularly 'Zhongtaohongyu', accumulated more malic acid due to lower temperatures and higher UV radiation, which affected gene expression related to organic acid synthesis and degradation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!