Practical High-Throughput Method to Screen Compounds for Anthelmintic Activity against .

Molecules

Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia.

Published: July 2021

In the present study, we established a practical and cost-effective high throughput screening assay, which relies on the measurement of the motility of by infrared light-interference. Using this assay, we screened 14,400 small molecules from the "HitFinder" library (Maybridge), achieving a hit rate of 0.3%. We identified small molecules that reproducibly inhibited the motility of (young adults) and assessed dose relationships for a subset of compounds. Future work will critically evaluate the potential of some of these hits as candidates for subsequent optimisation or repurposing as nematocides or nematostats. This high throughput screening assay has the advantage over many previous assays in that it is cost- and time-effective to carry out and achieves a markedly higher throughput (~10,000 compounds per week); therefore, it is suited to the screening of libraries of tens to hundreds of thousands of compounds for subsequent evaluation and development. The present phenotypic whole-worm assay should be readily adaptable to a range of socioeconomically important parasitic nematodes of humans and animals, depending on their dimensions and motility characteristics in vitro, for the discovery of new anthelmintic candidates. This focus is particularly important, given the widespread problems associated with drug resistance in many parasitic worms of livestock animals globally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305057PMC
http://dx.doi.org/10.3390/molecules26144156DOI Listing

Publication Analysis

Top Keywords

high throughput
8
throughput screening
8
screening assay
8
small molecules
8
practical high-throughput
4
high-throughput method
4
method screen
4
compounds
4
screen compounds
4
compounds anthelmintic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!