In order to explore how specific atom-to-atom replacements change the electrostatic potentials on 1,3,4-chalcogenadiazole derivatives, and to deliberately alter the balance between intermolecular interactions, four target molecules were synthesized and characterized. DFT calculations indicated that the atom-to-atom substitution of Br with I, and S with Se enhanced the σ-hole potentials, thus increasing the structure directing ability of halogen bonds and chalcogen bonds as compared to intermolecular hydrogen bonding. The delicate balance between these intermolecular forces was further underlined by the formation of two polymorphs of 5-(4-iodophenyl)-1,3,4-thiadiazol-2-amine; Form I displayed all three interactions while Form II only showed hydrogen and chalcogen bonding. The results emphasize that the deliberate alterations of the electrostatic potential on polarizable atoms can cause specific and deliberate changes to the main synthons and subsequent assemblies in the structures of this family of compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306955PMC
http://dx.doi.org/10.3390/molecules26144125DOI Listing

Publication Analysis

Top Keywords

halogen bonds
8
bonds chalcogen
8
chalcogen bonds
8
balance intermolecular
8
bonds
5
balance hydrogen
4
hydrogen bonds
4
bonds halogen
4
bonds crystal
4
crystal structures
4

Similar Publications

Unprecedented carbonic anhydrase inhibition mechanism: Targeting histidine 64 side chain through a halogen bond.

Arch Pharm (Weinheim)

January 2025

Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Firenze, Italy.

2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.

View Article and Find Full Text PDF

Renewable energy-driven electrochemical CO2 reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO2 electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO2 nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers.

View Article and Find Full Text PDF

Multi-Dimensional Color Tunable Long Persistent Luminescence in Metal Halide-Based CPs Through Precise Manipulation of Electronic and Steric Effects.

Small

January 2025

Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

Regulating strategies for long persistent luminescence (LPL) are always in high demand. Herein, a series of coordination polymers (CPs) (SUST-Z1-Z4) are fabricated using 1,10-phenanthroline derivatives involving different substituents (─H, ─CH, ─Cl, and ─Br) as ligands, respectively. Crystallographic data demonstrate that these CPs adopt alternating arrangements of cadmium halide chains and π-conjugated ligands.

View Article and Find Full Text PDF

Comparison of blending and bonding of phytic acid arginine salt and cellulose nanofibers on their synergistic flame-retardant effect in poly (butylene succinate).

Int J Biol Macromol

January 2025

School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; China Advanced Flame Retardant Engineering Technology Research Center for Light Industry, Beijing 100048, China; Engineering laboratory for halogen-free flame retardants for polymer materials in the petroleum and chemical industry, Beijing 100048, China.

In this study, cellulose nanofibers (CNFs) were utilized as a synergistic agent, and combined with phytic acid arginine salt (PaArg) via blending and bonding. The effects of these different binding techniques of CNFs and PaArg on the flame retardant and mechanical properties of poly (butylene succinate) (PBS) were explored. The results indicated that both blended and bonded CNFs and PaArg enabled PBS composites to achieve a UL 94 V-0 rating, with the limiting oxygen index (LOI) value of the composite exceeding 28 %.

View Article and Find Full Text PDF

Pentafluoroorthotellurate Uncovered: Theoretical Perspectives on an Extremely Electronegative Group.

Inorg Chem

January 2025

Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza 50009, Spain.

Article Synopsis
  • The pentafluoroorthotellurate group (-OTeF, teflate) is a potent electron-withdrawing substitute for fluoride, known for its stability and size, which helps avoid bridging ligand behavior.
  • This study employs advanced Quantum Chemical Topology methods to analyze the electronic structure and bonding of the teflate group, comparing its electronegativity with halogens and investigating the interactions in various XOTeF systems.
  • Findings reveal that while teflate exhibits strong electron-withdrawing abilities akin to fluorine, its bonding is predominantly ionic and shares similar electronegativity traits with other O-donor groups.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!