Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome responsible for high mortality and morbidity rates. It has an ever growing social and economic impact and a deeper knowledge of molecular and pathophysiological basis is essential for the ideal management of HFpEF patients. The association between HFpEF and traditional cardiovascular risk factors is known. However, myocardial alterations, as well as pathophysiological mechanisms involved are not completely defined. Under the definition of HFpEF there is a wide spectrum of different myocardial structural alterations. Myocardial hypertrophy and fibrosis, coronary microvascular dysfunction, oxidative stress and inflammation are only some of the main pathological detectable processes. Furthermore, there is a lack of effective pharmacological targets to improve HFpEF patients' outcomes and risk factors control is the primary and unique approach to treat those patients. Myocardial tissue characterization, through invasive and non-invasive techniques, such as endomyocardial biopsy and cardiac magnetic resonance respectively, may represent the starting point to understand the genetic, molecular and pathophysiological mechanisms underlying this complex syndrome. The correlation between histopathological findings and imaging aspects may be the future challenge for the earlier and large-scale HFpEF diagnosis, in order to plan a specific and effective treatment able to modify the disease's natural course.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304780PMC
http://dx.doi.org/10.3390/ijms22147650DOI Listing

Publication Analysis

Top Keywords

myocardial tissue
8
tissue characterization
8
heart failure
8
failure preserved
8
preserved ejection
8
ejection fraction
8
cardiac magnetic
8
magnetic resonance
8
molecular pathophysiological
8
risk factors
8

Similar Publications

Purpose: We designed a study investigating the cardioprotective role of sleep apnea (SA) in patients with acute myocardial infarction (AMI), focusing on its association with infarct size and coronary collateral circulation.

Methods: We recruited adults with AMI, who underwent Level-III SA testing during hospitalization. Delayed-enhancement cardiac magnetic resonance (CMR) imaging was performed to quantify AMI size (percent-infarcted myocardium).

View Article and Find Full Text PDF

Objectives: We present a case series of patients with granulomatous myocarditis presenting as atrial arrhythmias accompanied by lymphadenopathy.

Background: Atrial myocarditis (AM) may be the cause of atrial fibrillation (AF) in patients without risk factors.

Methods: Patients with atrial fibrillation without risk factors underwent 18F-Fluorodeoxyglucose positron emission tomography (18F-FDG-PET).

View Article and Find Full Text PDF

Cardiomyocyte S1PR1 promotes cardiac regeneration via AKT/mTORC1 signaling pathway.

Theranostics

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.

Lower vertebrates and some neonatal mammals are known to possess the ability to regenerate cardiomyocyte and fully recover after heart injuries within a limited period. Understanding the molecular mechanisms of heart regeneration and exploring new ways to enhance cardiac regeneration hold significant promise for therapeutic intervention of heart failure. Sphingosine 1-phospahte receptor 1 (S1PR1) is highly expressed in cardiomyocytes and plays a crucial role in heart development and pathological cardiac remodeling.

View Article and Find Full Text PDF

Evidence and perspectives on miRNA, circRNA, and lncRNA in myocardial ischemia-reperfusion injury: a bibliometric study.

J Cardiothorac Surg

January 2025

Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Capital Medical University, Beijing, 100069, China.

Objective: miRNA, circRNA, and lncRNA play crucial roles in the pathogenesis and progression of myocardial ischemia-reperfusion injury (MI/RI). This study aims to provide valuable insights into miRNA, circRNA, lncRNA, and MI/RI from a bibliometric standpoint, with the goal of fostering further advancements in this area.

Methods: The relevant literature in the field of miRNA, circRNA, lncRNA, and MI/RI was retrieved from the Science Citation Index Expanded (SCI-E) database within Web of Science.

View Article and Find Full Text PDF

Background: This article aims to use high-throughput sequencing to identify miRNAs associated with ferroptosis in myocardial ischemia-reperfusion injury, select a target miRNA, and investigate its role in H9C2 cells hypoxia-reoxygenation injury.

Methods: SD rats and H9C2 cells were used as subjects. ELISA kits quantified MDA, SOD, GSH, LDH, and ferritin levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!