Inflammation has a fundamental impact on the pathophysiology of osteoarthritis (OA), a common form of degenerative arthritis. It has previously been established that curcumin, a component of turmeric (), has anti-inflammatory properties. This research evaluates the potentials of curcumin on the pathophysiology of OA in vitro. To explore the anti-inflammatory efficacy of curcumin in an inflamed joint, an osteoarthritic environment (OA-EN) model consisting of fibroblasts, T-lymphocytes, 3D-chondrocytes is constructed and co-incubated with TNF-α, antisense oligonucleotides targeting NF-kB (ASO-NF-kB), or an IkB-kinase (IKK) inhibitor (BMS-345541). Our results show that OA-EN, similar to TNF-α, suppresses chondrocyte viability, which is accompanied by a significant decrease in cartilage-specific proteins (collagen II, CSPG, Sox9) and an increase in NF-kB-driven gene proteins participating in inflammation, apoptosis, and breakdown (NF-kB, MMP-9, Cox-2, Caspase-3). Conversely, similar to knockdown of NF-kB at the mRNA level or at the IKK level, curcumin suppresses NF-kB activation, NF-kB-promotes gene proteins derived from the OA-EN, and stimulates collagen II, CSPG, and Sox9 expression. Furthermore, co-immunoprecipitation assay shows that curcumin reduces OA-EN-mediated inflammation and chondrocyte apoptosis, with concomitant chondroprotective effects, due to modulation of Sox-9/NF-kB signaling axis. Finally, curcumin selectively hinders the interaction of p-NF-kB-p65 directly with DNA-this association is disrupted through DTT. These results suggest that curcumin suppresses inflammation in OA-EN via modulating NF-kB-Sox9 coupling and is essential for maintaining homeostasis in OA by balancing chondrocyte survival and inflammatory responses. This may contribute to the alternative treatment of OA with respect to the efficacy of curcumin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306025 | PMC |
http://dx.doi.org/10.3390/ijms22147645 | DOI Listing |
Int J Biol Macromol
January 2025
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China. Electronic address:
This study investigated the effect of different-polarity aqueous ethanol solutions on the formation of V-type starch originating from corn starch. Scanning electron microscopy revealed that the morphology of starch transformed from a random lamellar structure to a granular structure with decreasing solution polarity. When the ethanol concentration increased from 40 % to 60 %, the crystallinity and single-helix ratio of V-type starch increased from 9.
View Article and Find Full Text PDFAnalyst
January 2025
Questrom School of Business, Boston University, Boston, MA, 02215, USA.
Latent fingerprints (LFPs) are invisible impressions that need to be developed before being used for criminal investigation; however, existing fingerprint visualization techniques face challenges, such as complex preparation and poor contrast. To advance practical fingerprint detection, green-emissive micron-sized curcumin/kaolin composites were synthesized a facile and cost-effective one-step physical cross-linking method, which exhibited unprecedented performance in developing diversified marks, including LFPs, knuckle prints, palm prints, and footprints, with clear three-level details on various substrates. Notably, the powders successfully developed LFPs that were aged for 30 days and even up to 100 days, meeting the stringent requirements for comprehensive forensic application.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
December 2024
Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, China. *Corresponding author, E-mail:
Objective To investigate the protective effect of curcumin (Cur) against arsenic-induced neuroimmune toxicity and the underlying molecular mechanisms in vivo. Methods Eighty SPF female C57BL/6 mice were randomly assigned to four groups: a control group, an arsenic-treated group, a Cur-treated group and an arsenic+Cur group, with 20 mice in each group. The control group received distilled water; the arsenic-treated group was given 50 mg/L NaAsO in the drinking water; the Cur-treated group was gavaged with 200 mg/kg of curcumin for 45 days; and the arsenic+Cur group received distilled water and was gavaged with 200 mg/kg of curcumin.
View Article and Find Full Text PDFCureus
December 2024
Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, IND.
Background: Curcumin (Cur) is a polyphenol phyto-compound found in turmeric () that inhibits tumorigenesis by introducing apoptosis and restricting cell survival and proliferation. This in vitro research article focuses on the pharmacodynamic interactions of Cur combined with the commercial drug doxorubicin (Doxo) to enhance the cytotoxicity of Doxo at lower doses against triple-negative breast cancer cells (MDA-MB-231) with the chemo-protective effect against normal HEK293 cells. In this study, we observed the dose-dependent cytotoxicity, increased reactive oxygen species (ROS) generation, and increased chromatin condensation in combination doses compared to single doses.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
To address the rising prevalence of bacterial infections and the need for innovative therapeutic solutions, this study has developed a novel antibacterial hydrogel composite composed of Aloe vera, gelatin, sodium alginate, and Sterculia monosperma-silver nanoparticles (SM-AgNPs) loaded curcumin-nanoliposomes (NLPs). The aloe vera/gelatin/sodium alginate hydrogels (AGS) are prepared using different weight ratios of Aloe vera, gelatin, and sodium alginate, aiming to optimize mechanical properties and biocompatibility for biomedical applications. The incorporation of SM-AgNPs and curcumin-loaded NLPs enhanced the hydrogels' antibacterial properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!