Immune-mediated inflammatory diseases (IMIDs), such as inflammatory bowel diseases and inflammatory arthritis (e.g., rheumatoid arthritis, psoriatic arthritis), are marked by increasing worldwide incidence rates. Apart from irreversible damage of the affected tissue, the systemic nature of these diseases heightens the incidence of cardiovascular insults and colitis-associated neoplasia. Only 40-60% of patients respond to currently used standard-of-care immunotherapies. In addition to this limited long-term effectiveness, all current therapies have to be given on a lifelong basis as they are unable to specifically reprogram the inflammatory process and thus achieve a true cure of the disease. On the other hand, the development of various OMICs technologies is considered as "the great hope" for improving the treatment of IMIDs. This review sheds light on the progressive development and the numerous approaches from basic science that gradually lead to the transfer from "bench to bedside" and the implementation into general patient care procedures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306614 | PMC |
http://dx.doi.org/10.3390/ijms22147506 | DOI Listing |
Methods Mol Biol
January 2025
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
Lineage tracing has significantly advanced our comprehension in many areas of biology, such as development or immunity, by precisely measuring cellular processes like migration, division, or differentiation across labeled cells and their progeny. Traditional recombinase-based prospective lineage tracing is limited by the need for a priori cell type information and is constrained in the numbers of clones it can simultaneously track. In this sense, clonal lineage tracing with integrated random barcodes offers a robust alternative, enabling researchers to label and track a vast array of cells and their progeny over time.
View Article and Find Full Text PDFMol Omics
January 2025
Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
The present work aimed to examine the primary mechanisms of liver damage, namely the impact of gut-derived endotoxins along the gut-liver axis and adipose-derived free fatty acids along the adipose-liver axis. These processes are known to play a significant role in the development of hepatic inflammation and steatosis. Although possible overlapping in the pathogenesis was expected, these processes have unique pathophysiological consequences.
View Article and Find Full Text PDFMol Omics
January 2025
Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL 34243, USA.
Brevetoxins are a type of neurotoxin produced in red tide blooms. Northern quahogs () are extensively used in commercial aquaculture farming, and early-stage metabolomics studies can provide early warnings of brevetoxins for farmers. In this study, NMR-based metabolomics was performed to investigate the response of clam gills and digestive glands under a series of sublethal doses of brevetoxins.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
Gossypol removal is crucial for the resourceful utilization of cottonseed meals in the food and feed industries. Herein, we investigated the comprehensive detoxification mechanism of a gossypol-tolerant strain of (WK331) newly isolated from the rumen. Biodegradation assays showed that WK331 removes over 80% of free gossypol, of which 50% was biodegraded and 30% was converted into bound gossypol.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
The Stomatology Center and Research Center of Oral and Maxillofacial Development and Regeneration of Xiangya Hospital; Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha410008, China.
Single-cell and spatial multi-omics technologies enable the simultaneous analysis of thousands of cells in various states, revealing their transcriptional profiles, chromatin accessibility, and spatial positioning. Recent advances in single-cell multi-omics have led to significant discoveries regarding the definition, function, evolution, and interaction of various cell subtypes during tooth development. We summarize key findings from recent single-cell multi-omics studies on tooth development, highlighting their contributions to the field and discussing future perspectives in dental developmental genomics research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!