Advances in the Chemistry of Porphyrins and Related Macrocycles.

Int J Mol Sci

Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina and C.I.R.C.M.S.B, V.le F. Stagno D' Alcontres, 31-98166 Messina, Italy.

Published: July 2021

Porphyrins and their analogues feature remarkably in nature, being prosthetic groups in a wide variety of primary metabolites playing a pivotal role in many biological processes [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307316PMC
http://dx.doi.org/10.3390/ijms22147487DOI Listing

Publication Analysis

Top Keywords

advances chemistry
4
chemistry porphyrins
4
porphyrins macrocycles
4
macrocycles porphyrins
4
porphyrins analogues
4
analogues feature
4
feature remarkably
4
remarkably nature
4
nature prosthetic
4
prosthetic groups
4

Similar Publications

Quantitative structure-property relationship (QSPR) modeling has emerged as a pivotal tool in the field of medicinal chemistry and drug design, offering a predictive framework for understanding the correlation between chemical structure and physicochemical properties. Topological indices are mathematical descriptors derived from the molecular graphs that capture structural features and connectivity, playing a crucial role in QSPR analysis by quantitatively relating chemical structures to their physicochemical properties and biological activities. Lung cancer is characterized by its aggressive nature and late-stage diagnosis, often limiting treatment options and significantly impacting patient survival rates.

View Article and Find Full Text PDF

Academic data processing is crucial in scientometrics and bibliometrics, such as research trending analysis and citation recommendation. Existing datasets in this domain have predominantly concentrated on textual data, overlooking the importance of visual elements. To bridge this gap, we introduce a multidisciplinary multimodal aligned dataset (MMAD) specifically designed for academic data processing.

View Article and Find Full Text PDF

Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.

View Article and Find Full Text PDF

Intradermal Advanced Glycation End-products Relate to Reduced Sciatic Nerve Structural Integrity in Type 2 Diabetes.

Clin Neuroradiol

January 2025

Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.

Background: Cardiovascular risk management is beneficial, but stringent glycemic control does not prevent the progression of distal sensorimotor polyneuropathy (DSPN). Persistent hyperglycemia-induced alterations and cardiovascular factors may contribute to diabetes-associated nerve damage. This study aimed to evaluate the correlation between skin auto-fluorescence (sAF), an indicator of dermal advanced glycation end-product (AGE) accumulations, cardiovascular risk, and changes in peripheral nerve integrity.

View Article and Find Full Text PDF

The rational design of non-fullerene acceptors (NFAs) with both high crystallinity and photoluminescence quantum yield (PLQY) is of crucial importance for achieving high-efficiency and low-energy-loss organic solar cells (OSCs). However, increasing the crystallinity of an NFA tends to decrease its PLQY, which results in a high non-radiative energy loss in OSCs. Here we demonstrate that the crystallinity and PLQY of NFAs can be fine-tuned by asymmetrically adapting the branching position of alkyl chains on the thiophene unit of the L8-BO acceptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!