Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here, we designed paper sheets coated with chitosan, bacterial cellulose (nanofibers), and ZnO with boosted antibacterial and mechanical activity. We investigated the compositions, with ZnO exhibiting two different sizes/shapes: (1) rods and (2) irregular sphere-like particles. The proposed processing of bacterial cellulose resulted in the formation of nanofibers. Antimicrobial behavior was tested using ATCC 25922™ following the ASTM E2149-13a standard. The mechanical properties of the paper sheets were measured by comparing tearing resistance, tensile strength, and bursting strength according to the ISO 5270 standard. The results showed an increased antibacterial response (assigned to the combination of chitosan and ZnO, independent of its shape and size) and boosted mechanical properties. Therefore, the proposed composition is an interesting multifunctional mixture for coatings in food packaging applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305840 | PMC |
http://dx.doi.org/10.3390/ijms22147383 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!