Intra-tumoral heterogeneity presents a major obstacle to cancer therapeutics, including conventional chemotherapy, immunotherapy, and targeted therapies. Stochastic events such as mutations, chromosomal aberrations, and epigenetic dysregulation, as well as micro-environmental selection pressures related to nutrient and oxygen availability, immune infiltration, and immunoediting processes can drive immense phenotypic variability in tumor cells. Here, we discuss how histone deacetylase inhibitors, a prominent class of epigenetic drugs, can be leveraged to counter tumor heterogeneity. We examine their effects on cellular processes that contribute to heterogeneity and provide insights on their mechanisms of action that could assist in the development of future therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307174 | PMC |
http://dx.doi.org/10.3390/cancers13143575 | DOI Listing |
CNS Drugs
January 2025
New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.
The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.
View Article and Find Full Text PDFNat Commun
January 2025
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors.
View Article and Find Full Text PDFPsychol Sport Exerc
January 2025
Department of magnetic resonance imaging, Beijing Shijitan Hospital, Capital Medical University, 100038 Beijing, China. Electronic address:
Soccer is a sport that requires athletes to be constantly aware of rapidly changing and unpredictable environments and to react adaptively. Previous studies have found that soccer players typically exhibit a vigilance advantage, but the underlying cognitive and neural basis for this is unclear. In this study, 27 soccer players, 17 age-matched artistic gymnasts, and 57 college students were recruited to participate in a psychomotor vigilance task.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, Korea. Electronic address:
FXR, encoded by Nh1r4, is a nuclear receptor crucial in regulating bile acid, lipid, and glucose metabolism. Prior research has indicated that activating FXR in the liver and small intestine may offer protection against obesity and metabolic diseases. This study demonstrates the essential role of the FXR-ApoC2 pathway in promoting the browning of white adipose tissue (WAT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!