Three-dimensional (3D) cancer cell culture systems have been developed to aid the study of molecular mechanisms in cancer development, identify therapeutic targets, and test drug candidates. In this study, we developed a strategy for mimicking the hypoxic tumor microenvironment in a 3D cancer cell culture system using multi-layer, nanofibrous poly(ε-caprolactone) (PCL) scaffold (pNFS)-based cancer cell cultures. We found that human colon cancer cells infiltrated pNFS within 3 days and could be cultured three-dimensionally within the NFS. When incubated in four stacks of 30 µm-thick pNFS for 3 days, colon cancer cells in layer three showed partially reduced entry into the S phase, whereas those in layer four, located farthest from the media, showed a marked reduction in S-phase entry. As a consequence, cells in layer four exhibited hypoxia-induced disorganization of F-actin on day 3, and those in layers three and four showed an increase in the expression of the hypoxia-induced transcription factor HIF-1α and its target genes, , , , and . Consistent with these results, doxorubicin- and ionizing radiation-induced cell death was reduced in colon cancer cells cultured in layers three and four. These results suggest that pNFS-based multi-layer colon cancer cell cultures mimic the hypoxic tumor microenvironment and are useful for bioassays.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305385 | PMC |
http://dx.doi.org/10.3390/cancers13143550 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!