Polyester Polymeric Nanoparticles as Platforms in the Development of Novel Nanomedicines for Cancer Treatment.

Cancers (Basel)

Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain.

Published: July 2021

AI Article Synopsis

  • Many therapeutic agents fail in clinical development due to toxic effects on healthy tissues, prompting the use of nanotechnology to improve drug delivery.
  • Biodegradable and biocompatible polymers are highlighted as effective materials for creating polymeric nanoparticles, which enhance drug targeting and circulation time.
  • The text discusses various applications of polymeric nanoparticles in cancer treatment, covering their materials, formulation methods, mechanisms, and ongoing clinical research.

Article Abstract

Many therapeutic agents have failed in their clinical development, due to the toxic effects associated with non-transformed tissues. In this context, nanotechnology has been exploited to overcome such limitations, and also improve navigation across biological barriers. Amongst the many materials used in nanomedicine, with promising properties as therapeutic carriers, the following one stands out: biodegradable and biocompatible polymers. Polymeric nanoparticles are ideal candidates for drug delivery, given the versatility of raw materials and their feasibility in large-scale production. Furthermore, polymeric nanoparticles show great potential for easy surface modifications to optimize pharmacokinetics, including the half-life in circulation and targeted tissue delivery. Herein, we provide an overview of the current applications of polymeric nanoparticles as platforms in the development of novel nanomedicines for cancer treatment. In particular, we will focus on the raw materials that are widely used for polymeric nanoparticle generation, current methods for formulation, mechanism of action, and clinical investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304499PMC
http://dx.doi.org/10.3390/cancers13143387DOI Listing

Publication Analysis

Top Keywords

polymeric nanoparticles
16
nanoparticles platforms
8
platforms development
8
development novel
8
novel nanomedicines
8
nanomedicines cancer
8
cancer treatment
8
raw materials
8
polyester polymeric
4
nanoparticles
4

Similar Publications

Liquid-nano-liquid interface-oriented anisotropic encapsulation.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.

View Article and Find Full Text PDF

Analysis of the internal motions of thermoresponsive polymers and single chain nanoparticles.

Soft Matter

January 2025

Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44122, USA.

Data-driven techniques, such as proper orthogonal decomposition (POD) and uniform manifold approximation & projection (UMAP), are powerful methods for understanding polymer behavior in complex systems that extend beyond ideal conditions. They are based on the principle that low-dimensional behaviors are often embedded within the structure and dynamics of complex systems. Here, the internal motions of a thermoresponsive, LCST polymer are investigated for two cases: (1) the coil-to-globule transition that occurs as the system is heated above its critical temperature and (2) intramolecularly crosslinked, single chain nanoparticles (SCNPs) both above and below the critical temperature ().

View Article and Find Full Text PDF

Prussian blue nanoparticles (PBNPs) have been identified as a promising candidate for biomimetic peroxidase (POD)-like activity, specifically due to the metal centres (Fe/Fe) of Prussian blue (PB), which have the potential to function as catalytically active centres. The decoration of PBNPs with desired functional polymers (such as amino- or carboxylate-based) primarily facilitates the subsequent linkage of biomolecules to the nanoparticles for their use in biosensor applications. Thus, the elucidation of the catalytic POD mimicry of these systems is of significant scientific interest but has not been investigated in depth yet.

View Article and Find Full Text PDF

Afterglow luminescence provides ultrasensitive optical detection by minimizing tissue autofluorescence and increasing the signal-to-noise ratio. However, due to the lack of suitable unimolecular afterglow scaffolds, current afterglow agents are nanocomposites containing multiple components with limited afterglow performance and have rarely been applied for cancer theranostics. Herein, we report the synthesis of a series of oxathiine-containing donor-acceptor block semiconducting polymers (PDCDs) and the observation of their high photoreactivity and strong near-infrared (NIR) afterglow luminescence.

View Article and Find Full Text PDF

Emerging Combinatorial Drug Delivery Strategies for Breast Cancer: A Comprehensive Review.

Curr Drug Targets

January 2025

Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!