To treat lung tumours with particle therapy, different additional tasks and challenges in treatment planning and application have to be addressed thoroughly. One of these tasks is the quantification and consideration of the Bragg peak (BP) degradation due to lung tissue: as lung is an heterogeneous tissue, the BP is broadened when particles traverse the microscopic alveoli. These are not fully resolved in clinical CT images and thus, the effect is not considered in the dose calculation. In this work, a correlation between the CT histograms of heterogeneous material and the impact on the BP curve is presented. Different inorganic materials were scanned with a conventional CT scanner and additionally, the BP degradation was measured in a proton beam and was then quantified. A model is proposed that allows an estimation of the modulation power by performing a histogram analysis on the CT scan. To validate the model for organic samples, a second measurement series was performed with frozen porcine lunge samples. This allows to investigate the possible limits of the proposed model in a set-up closer to clinical conditions. For lung substitutes, the agreement between model and measurement is within ±0.05 mm and for the organic lung samples, within ±0.15 mm. This work presents a novel, simple and efficient method to estimate if and how much a material or a distinct region (within the lung) is degrading the BP on the basis of a common clinical CT image. Up until now, only a direct in-beam measurement of the region or material of interest could answer this question.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ac176e | DOI Listing |
J Pathol
January 2025
Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, PR China.
Aberrant expression of grainyhead-like transcription factor 3 (GRHL3) has been extensively reported in the development and progression of several squamous cell carcinomas, such as cutaneous, head and neck, and esophageal squamous cell carcinoma. However, the clinical significance and biological roles of GRHL3 in lung squamous cell (LUSC) carcinoma are largely unclear. Herein, we report that GRHL3 was significantly upregulated in lung squamous epithelium of LUSC tissues, bronchiole, and bronchus.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;
Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.
View Article and Find Full Text PDFDrug Deliv
December 2025
College of Pharmacy, Xinxiang Medical University, Xinxiang, China.
Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment.
View Article and Find Full Text PDFRedox Rep
December 2025
Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, People's Republic of China.
Background: Amiodarone, a common antiarrhythmic drug, is known for its severe side effects, including pulmonary toxicity, which involves oxidative stress and apoptosis. Artemisinin, an antimalarial drug, has shown cytoprotective properties by inhibiting oxidative stress and apoptosis. This study investigated the protective effects of artemisinin against amiodarone-induced toxicity in human bronchial epithelial cells (BEAS-2B) and mouse models.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu, China.
Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is the main cause of mortality in lung cancer. This study aimed to investigate the roles of neuropilin 1 (NRP1) in non-small cell lung cancer (NSCLC). NRP1 expression was assessed in tumor tissues from patients with osimertinib-resistant (OR) NSCLC and osimertinib-responsive NSCLC as well as in patients with paracancerous NSCLC tissues who did not undergo radiotherapy or chemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!