Protein post-translational modification (PTM) is crucial to modulate protein interactions and activity in various biological processes. Emerging evidence has revealed PTM patterns participate in the pathology onset and progression of various diseases. Current PTM identification relies mainly on mass spectrometry-based approaches that limit the assessment to the entire protein population in question. Here we report a label-free method for the detection of the single peptide with only one amino acid modification via electronic fingerprinting using reengineered durable channel of phi29 DNA packaging motor, which bears the deletion of 25-amino acids (AA) at the C-terminus or 17-AA at the internal loop of the channel. The mutant channels were used to detect propionylation modification via single-molecule fingerprinting in either the traditional patch-clamp or the portable MinION™ platform of Oxford Nanopore Technologies. Up to 2000 channels are available in the MinION™ Flow Cells. The current signatures and dwell time of individual channels were identified. Peptides with only one propionylation were differentiated. Excitingly, identification of single or multiple modifications on the MinION™ system was achieved. The successful application of PTM differentiation on the MinION™ system represents a significant advance towards developing a label-free and high-throughput detection platform utilizing nanopores for clinical diagnosis based on PTM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405592 | PMC |
http://dx.doi.org/10.1016/j.biomaterials.2021.121022 | DOI Listing |
Best Pract Res Clin Anaesthesiol
March 2024
1400 Holcombe Blvd, FC 13.2000, Houston, TX, 77030, USA. Electronic address:
Lung cancer is among one of the most commonly diagnosed malignancies and is the leading cause of cancer-related mortality in both men and women globally, with an estimated 1.8 million deaths annually. Moreover, it is also the leading cause of cancer related deaths in the United States (U.
View Article and Find Full Text PDFAvian Pathol
January 2025
Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, People's Republic of China.
Pullorum (. Pullorum) and Gallinarum (. Gallinarum) are the biovars of serovar Gallinarum that are responsible for pullorum disease and fowl typhoid in poultry, respectively.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved. Our study combines a meta-learning neural network and a physics-driven method to accurately estimate CAPW based on personalized physiological indicators.
View Article and Find Full Text PDFEClinicalMedicine
December 2024
Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).
View Article and Find Full Text PDFNatl Sci Rev
January 2025
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China.
The intentional manipulation of carrier characteristics serves as a fundamental principle underlying various energy-related and optoelectronic semiconductor technologies. However, achieving switchable and reversible control of the polarity within a single material to design optimized devices remains a significant challenge. Herein, we successfully achieved dramatic reversible p-n switching during the semiconductor‒semiconductor phase transition in BiI via pressure, accompanied by a substantial improvement in their photoelectric properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!