Duck hepatitis A virus serotype 1 (DHAV-1) causes acute inflammatory injury with a very high mortality rate in ducklings, leading to severe economic losses worldwide, especially in mainland China. There is an urgent need to find new treatments to prevent and control infection with DHAV-1. Not only is there a shortage of commercial anti-DHAV-1 drugs, but there are also gaps in the use and protection rates of existing commercial vaccines. We previously found that icariin (ICA), an extract of Epimedium, can reduce the mortality rate of ducklings after DHAV-1 infection, and the effect of ICA after phosphorylation modification (pICA) is more evident. In this study, we used duck embryo hepatocytes (DEHs) to investigate the mechanism of the alleviation of DHAV-1-induced inflammation and oxidative stress by ICA and pICA, and to further study their effects on hepatocyte mitochondrial function, apoptosis and cell cycle. It was found that ICA and pICA can inhibit the negative effects of DHAV-1 on apoptosis and cell cycle progression by stabilizing mitochondrial function, thereby reducing inflammation and ultimately protecting liver cells. The effects of pICA are more beneficial than those of ICA. The results of this study may be useful in the development of a new prophylactic and therapeutic strategy against DHAV-1 and other acute inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rvsc.2021.07.014 | DOI Listing |
Poult Sci
January 2025
Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271017, China; Shandong Provincial Key Laboratory of Zoonoses, Shandong Taian 271017, China. Electronic address:
Duck viral hepatitis (DVH) is one of the most common diseases of waterfowl. Duck hepatitis A virus type 1 (DHAV-1) and type 3 (DHAV-3) have been on the rise seriously endangering the development of duck farming. In this study, we constructed a recombinant Lactococcus lactis (L.
View Article and Find Full Text PDFVet Sci
December 2024
Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea.
Duck hepatitis A virus type 3 (DHAV-3) is a viral pathogen that causes acute, high-mortality hepatitis in ducklings, and vaccination with attenuated live vaccines is currently the main preventive measure against it. However, differentiating infected from vaccinated animals (DIVA) is crucial for clinical diagnosis and effective disease control. This study aimed to develop a rapid mismatch amplification mutation assay PCR (MAMA-PCR) diagnostic method to simultaneously detect and differentiate between wild-type and vaccine strains.
View Article and Find Full Text PDFPoult Sci
January 2025
College of Animal Science, South China Agricultural University, Guangzhou, China. Electronic address:
Virology
January 2025
Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China. Electronic address:
Duck Hepatitis B virus (DHBV) infection model is extensively utilized as an animal model for studying human hepatitis B virus infection and for comparative research. 557 liver samples from geese and ducks were collected in parts of Guangdong province, southern China. The overall prevalence of DHBV was 45.
View Article and Find Full Text PDFPoult Sci
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, PR China. Electronic address:
DHAV-3 is one of the main causative agents of duck viral hepatitis (DVH), an acute and highly lethal infectious disease in duck industry. However, the understanding of the pathogenesis of this virus in ducklings is limited. To dissect the molecular characteristics associated with pathobiology of ducklings to DHAV-3, we applied single-cell RNA-sequencing approach to profile the transcriptome of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!