While being highly effective on average, exposure-based treatments are not equally effective in all patients. The a priori identification of patients with a poor prognosis may enable the application of more personalized psychotherapeutic interventions. We aimed at identifying sociodemographic and clinical pre-treatment predictors for treatment response in spider phobia (SP). N = 174 patients with SP underwent a highly standardized virtual reality exposure therapy (VRET) at two independent sites. Analyses on group-level were used to test the efficacy. We applied a state-of-the-art machine learning protocol (Random Forests) to evaluate the predictive utility of clinical and sociodemographic predictors for a priori identification of individual treatment response assessed directly after treatment and at 6-month follow-up. The reliability and generalizability of predictive models was tested via external cross-validation. Our study shows that one session of VRET is highly effective on a group-level and is among the first to reveal long-term stability of this treatment effect. Individual short-term symptom reductions could be predicted above chance, but accuracies dropped to non-significance in our between-site prediction and for predictions of long-term outcomes. With performance metrics hardly exceeding chance level and the lack of generalizability in the employed between-site replication approach, our study suggests limited clinical utility of clinical and sociodemographic predictors. Predictive models including multimodal predictors may be more promising.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.janxdis.2021.102448DOI Listing

Publication Analysis

Top Keywords

treatment response
12
predictors treatment
8
exposure therapy
8
spider phobia
8
machine learning
8
external cross-validation
8
highly effective
8
priori identification
8
utility clinical
8
clinical sociodemographic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!