Water hardness above the optimal level can incite toxic effects in fish, which are often species specific. Hence, we aimed at obtaining insights on the potential effects of elevated water hardness as well as coping strategies in channel catfish (Ictalurus punctatus). First, a toxicity assay was performed where the 96 h-LC was calculated as 4939 mg/L CaCO. Thereafter, to gain knowledge on the underlying adaptive strategies to high water hardness, fish were exposed to seven hardness levels (150, 600, 1000, 1500, 2000, 3000 and 4000 mg/L CaCO at pH 8.15) for 15 days. Results showed that branchial activities of Ca-ATPase and Na/KATPase, which facilitate Ca uptake, reduced starting respectively from 1000 mg/L and 1500 mg/L CaCO. Nevertheless, Ca burden in plasma and tissue (gills, liver and intestine) remained elevated. Hardness exposure also disturbed cations (Na, K, Mg) and minerals (iron and phosphorus) homeostasis in a tissue-specific and dose-dependent manner. Both hemoglobin content and hematocrit dropped significantly at 3000-4000 mg/L CaCO, with a parallel decline in iron content in plasma and gills. Muscle water content rose dramatically at 4000 mg/L CaCO, indicating an osmo-regulation disruption. Higher hardness of 3000-4000 mg/L CaCO also incited a series of histopathological modifications in gills, liver and intestine; most likely due to excess Ca accumulation. Overall, these data suggest that channel catfish can adapt to a wide range of elevated hardness by modulating Ca regulatory pathways and histomorphological alterations, however, 1500 mg/L CaCO and above can impair the performance of this species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2021.111040 | DOI Listing |
Food Chem
December 2024
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China. Electronic address:
It is meaningful to explore the addition of additives and the structural characteristics of water on the quality of rice noodles. Herein, the effects of the addition of cassava starch and the size of water clusters on physicochemical and cooking properties of rice noodles were systematically studied. The addition of 25 % cassava starch effectively enhanced the swelling performance and textural properties of rice noodles.
View Article and Find Full Text PDFFood Chem
December 2024
Shandong Province Grilled Chicken Co., Ltd., Dezhou 253000, China.
Effects of varying levels of arginine (Arg) and aspartic acid (Asp) on the water-holding capacity (WHC) and eating quality of marinated pork meat were investigated. The addition of Arg significantly enhanced the WHC of marinated pork meat (P < 0.05) due to the increased pH levels of the meat.
View Article and Find Full Text PDFFood Chem
December 2024
Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China. Electronic address:
Fermented sea bass, recognized for its firmness and chewy texture, provides a distinct sensory experience.This study investigated the texture and microstructural properties of fermented sea bass during fermentation. Proteomics analysis identified the key proteins involved in firmness development, revealing the molecular mechanisms behind these changes.
View Article and Find Full Text PDFDent Mater
December 2024
University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP 05508-000, Brazil. Electronic address:
Objectives: This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.
Methods: Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50).
Int J Biol Macromol
December 2024
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. Electronic address:
In this study, a novel acid-induced heat-set soy protein hydrolysate (SPH) gel was successfully developed. The effects of protein (7 and 8 wt%) and glucono-δ-lactone (GDL, 4, 6, 8, and 10 wt%) concentrations on its aggregation and gelation behaviors were investigated by evaluating the structural, rheological, textural, and physical properties of the SPH gel. The structural properties revealed that GDL promoted the formation of SPH aggregates and gels, primarily via disulfide bonds and hydrophobic interactions, which were closely related to the unfolding of the protein structure, exposed hydrophobic groups, decreased protein solubility, and increased particle size and turbidity during the heating process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!