Novel ablative laser mediated transdermal immunization for microparticulate measles vaccine.

Int J Pharm

Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States. Electronic address:

Published: September 2021

With the need for safe and efficacious vaccines which could be administered via non-invasive procedure, alternatives to traditional injectables vaccines are sought after. The present study aimed to develop the microparticulate formulation of measles vaccine and explore the feasibility of transdermal delivery via ablative laser mediated skin microporation. Transdermal route offers several advantages including painless immunization and ease of administration. We propose to use P.L.E.A.S.E. ablative laser for transdermal immunization of the microparticulate measles vaccine. This laser emits energy at 2940 µm, enabling cold ablation. This creates the micropores of defined size for delivery of vaccines into the skin. We compared the efficacy of transdermal immunization using the particulate formulation of the vaccine to that of traditional subcutaneous immunization using soluble and particulate vaccine. The microparticles were formulated using the biocompatible and biodegradable bovine serum albumin (BSA)-based polymer matrix. These vaccine microparticles were non-cytotoxic to the antigen presenting cells (APCs) and could effectively stimulate the innate immune response, confirmed by release of nitric oxide (NO) from the Griess's assay. The APCs when exposed to vaccine microparticles also showed a significantly higher expression of antigen-presenting molecules, MHC I and MHC II, and their co-stimulatory molecules, CD80 and CD40 as compared to the blank microparticles. The microparticulate measles vaccine was evaluated in vivo in the murine model. We compared the serum IgG and IgM levels in the mice receiving the vaccine subcutaneously and transdermally post-immunization. The results revealed that transdermal immunization with microparticulate vaccine is as efficient as the traditional subcutaneous administration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.120882DOI Listing

Publication Analysis

Top Keywords

transdermal immunization
16
measles vaccine
16
ablative laser
12
immunization microparticulate
12
microparticulate measles
12
vaccine microparticles
12
vaccine
10
laser mediated
8
traditional subcutaneous
8
transdermal
6

Similar Publications

Psoriasis, a chronic autoimmune and non-communicable skin disease, affects 2-3% of the global population, creating a significant financial burden on healthcare systems worldwide. Treatment approaches are categorized based on disease severity, with first-line therapy focusing on topical treatments and second-line therapy encompassing phototherapy, systemic therapy, and biological therapy. Transdermal drug delivery methods present a promising alternative by enhancing drug absorption through the skin, potentially improving therapeutic outcomes while minimizing systemic adverse effects.

View Article and Find Full Text PDF

Outcomes of pediatric patients with suspected allergies to COVID-19 vaccines.

J Allergy Clin Immunol Glob

February 2025

Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, Hong Kong, China.

Background: Adverse effects following immunizations (AEFIs) can contribute to vaccine hesitancy.

Objective: We evaluated clinical outcomes of AEFIs subsequent to administration of the coronavirus disease 2019 (COVID-19) vaccine at 2 pediatric allergy centers.

Methods: Data on pediatric patients referred for COVID-19 AEFI concerns between March 2021 and October 2022 were reviewed.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a highly lethal infectious disease. The primary preventive measure is Bacille Calmette-Guérin (BCG), a live attenuated vaccine. However, the current intradermal vaccination method with 10-dose vials faces challenges such as inadequate infant injection, inaccurate dispensing, and unstable storage.

View Article and Find Full Text PDF

Smart core-shell microneedles for psoriasis therapy: In situ self-assembly of calcium ion-coordinated dexamethasone hydrogel.

J Control Release

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511443, China. Electronic address:

Psoriasis is a prevalent relapsing dermatological condition that often necessitates lifelong treatment. The distinctive thickening of the stratum corneum presents a challenge to drug penetration. The employment of microneedles has been demonstrated to enhance the transdermal drug delivery efficacy by creating multiple microchannels in the skin.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS), a widely distributed and persistent organic pollutant, is known to cause immune dysfunction. In a previous study, we reported that PFOS modestly increases mast cell activation. However, its effects on FcεRI (a high-affinity IgE receptor)-mediated mast cell activation, a pivotal process in inflammatory allergic reactions and innate immunity, have not been clearly demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!