The mammalian cerebral cortex is characterized by a 6-layer structure, and proper neuronal migration is critical for its formation. Cyclin-dependent kinase 5 (Cdk5) has been shown to be a critical kinase for neuronal migration. Several Cdk5 substrates have been suggested to be involved in ordered neuronal migration. However, in vivo loss-of-function studies on the function of Cdk5 phosphorylation substrates in neuronal migration in the developing cerebral cortex have not been reported. In this study, we demonstrated that Cdk5-mediated phosphorylation of collapsing mediator protein (CRMP) 2 is critical for neuronal migration in the developing cerebral cortex with redundant functions of CRMP1 and CRMP4. The cerebral cortices of triple-mutant CRMP1 knock-out (KO); CRMP2 knock-in (KI)/KI; and CRMP4 KO mice showed disturbed positioning of layers II-V neurons in the cerebral cortex. Further experiments using bromodeoxyuridine birthdate-labeling and in utero electroporation implicated radial migration defects in cortical neurons. Ectopic neurons were detected around the CA1 region and dentate gyrus in CRMP1 KO; CRMP2 KI/KI; and CRMP4 KO mice. These results suggest the importance of CRMP2 phosphorylation by Cdk5 and redundancy of CRMP1 and CRMP4 in proper neuronal migration in the developing cerebral cortex and hippocampus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhab228 | DOI Listing |
IBRO Neurosci Rep
June 2025
Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France.
It is well recognized that type II Diabetes (T2D) and overweight/obesity are established risk factors for stroke, worsening also their consequences. However, the underlying mechanisms by which these disorders aggravate outcomes are not yet clear limiting the therapeutic opportunities. To fill this gap, we characterized, for the first time, the effects of T2D and obesity on the brain repair mechanisms occurring 7 days after stroke, notably glial scarring.
View Article and Find Full Text PDFActa Neurobiol Exp (Wars)
January 2025
Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene is a critical tumor suppressor that plays an essential role in the development and functionality of the central nervous system. Located on chromosome 10 in humans and chromosome 19 in mice, PTEN encodes a protein that regulates cellular processes such as division, proliferation, growth, and survival by antagonizing the PI3K‑Akt‑mTOR signaling pathway. In neurons, PTEN dephosphorylates phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) to PIP2, thereby modulating key signaling cascades involved in neurogenesis, neuronal migration, and synaptic plasticity.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Cortical interneurons generated from ganglionic eminence via a long-distance journey of tangential migration display evident cellular and molecular differences across brain regions, which seeds the heterogeneous cortical circuitry in primates. However, whether such regional specifications in interneurons are intrinsically encoded or gained through interactions with the local milieu remains elusive. Here, we recruit 685,692 interneurons from cerebral cortex and subcortex including ganglionic eminence within the developing human and macaque species.
View Article and Find Full Text PDFβ-elemene has a variety of anti-inflammatory, antioxidant, and antitumor effects. Currently, the influence of β-elemene on adrenocortical carcinoma (ACC) malignant progression and action mechanism remains unclear. This research aims to explore the influence and action mechanism of β-elemene on ACC progression.
View Article and Find Full Text PDFhas been identified in human and mouse HD brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 that contributes to aggregate formation and neuronal dysfunction (Sathasivam et al., 2013). Detection of the HTT exon 1 protein (HTTex1p) has been accomplished with surrogate antibodies in fluorescence-based reporter assays (MSD, HTRF), and immunoprecipitation assays, in HD postmortem cerebellum and knock-in mice but direct detection by SDS-PAGE and western blot assay has been lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!