Adolescents are characterized by a propensity for risky and impulsive behaviors, likely due to immature frontostriatal circuits. The medial orbitofrontal cortex (MO) is linked to risk and reward prediction during decision-making. Identifying age-dependent differences in MO activity and its inputs to downstream regions can elucidate the neural substrates that permit the transition from high-risk adolescent behaviors to increased risk assessment in adulthood. Action selection biased by information gathered by the MO is likely carried out by efferents into the nucleus accumbens (NAc), which guides reward-directed behaviors. Despite the large age dependency of risk-based decision-making, there is nothing known about adolescent MO activity. Here, we recorded action potentials of MO neurons from anesthetized adult and adolescent rats in vivo. On average, adolescent MO neurons fire faster and within narrower ranges than adults, and adolescents have more active MO neurons than adults. Using antidromic stimulation of axon terminals to identify MO neurons that project to NAc (MO→NAc), we found that adolescent MO→NAc neurons have a narrower range of firing frequencies than non-NAc-projecting MO neurons and adult MO→NAc neurons. These age-dependent differences in MO and MO→NAc populations may result from the fine-tuning of circuits between adolescence and adulthood that promote specific age-dependent behaviors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805833 | PMC |
http://dx.doi.org/10.1093/cercor/bhab231 | DOI Listing |
Neuroradiology
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.
Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.
Neuropharmacology
January 2025
Department of Neuroscience; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425. Electronic address:
Alcohol use disorder is associated with altered function of cortical-amygdala-striatal circuits such as the orbitofrontal cortex (OFC), basolateral amygdala (BLA) and their connections to the dorsal medial striatum (DMS) shown to be involved in goal-directed actions. Using retrobead tracing, we previously reported enhanced excitability of DMS-projecting OFC neurons in mice following 3-to-7-day withdrawal from chronic intermittent ethanol (CIE) exposure. In the same animals, spiking of DMS-projecting BLA neurons was decreased at 3-days post-withdrawal followed by an increase in firing at 7- and 14-days.
View Article and Find Full Text PDFJ Psychiatr Res
January 2025
Endocrinology and Nutrition Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Medicine Department, Universitat Autònoma de Barcelona, 08208, Sabadell, Spain.
Individuals with Prader Willi syndrome (PWS) often exhibit behavioral difficulties characterized by deficient impulse regulation and obsessive-compulsive features resembling those observed in obsessive-compulsive disorder. The genetic configuration of PWS aligns with molecular and neurophysiological findings suggesting dysfunction in the inhibitory gamma-aminobutyric acid (GABA) interneuron system may contribute to its clinical manifestation. In the cerebral cortex, this dysfunction is expressed as desynchronization of local neural activity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
The orbitofrontal cortex (OFC) is a large cortical structure, expansive across anterior-posterior axes. It is essential for flexibly updating learned behaviors, and paradoxically, also implicated in inflexible and compulsive-like behaviors. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Computational Brain Research and Intervention (C-Brain) Lab, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, USA.
Introduction: Amyloid beta (Aβ) plaques and hyperphosphorylated tau in the entorhinal regions are key Alzheimer's disease (AD) markers, but the spatial Aβ pathways influencing tau pathology remain unclear.
Methods: We applied predictive modeling to identify Aβ standardized uptake value ratio (SUVR) spatial patterns that predict entorhinal tau levels, future hippocampal volume, and Preclinical Alzheimer's Cognitive Composite (PACC) scores at 5-year follow-up. The model was trained on Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 237), incorporating amyloid-PET (positron emission tomography), tau-PET, magnetic resonance imaging (MRI), and cognitive data, and validated on Harvard Aging Brain Study (HABS) (N = 276).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!