In response to neuronal activity changes, the adult hippocampal circuits undergo continuous synaptic remodeling, which is essential for information processing, learning, and memory encoding. Glial cells, including astrocytes and microglia, actively regulate hippocampal synaptic plasticity by coordinating the neuronal activity-induced synaptic changes at the circuit level. Emerging evidence suggests that the crosstalk between neurons and glia in the adult hippocampus is region specific and that the mechanisms controlling this process are critically dependent on secreted factors. Interleukin-33 (IL-33), a cytokine of the IL-1 family, is a key factor that modulates such glia-driven neuromodulations in two distinct hippocampal circuits. The activation of IL-33 and its receptor complex is important for maintaining the excitatory synaptic activity in the cornu ammonis 1 subregion and the remodeling of dentate gyrus synapses through activity-dependent astrocyte-synapse and microglia-synapse interactions, respectively. Meanwhile, the dysregulation of this signaling is implicated in multiple neurological disorders, especially Alzheimer's disease. Further investigations of how IL-33/ST2 signaling is regulated in a region-specific manner as well as its diverse functions in glia-synapse communications in the adult hippocampal circuitry will provide insights into the nature of hippocampal synaptic plasticity and homeostasis in health and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dna.2021.0491DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
12
adult hippocampal
12
il-33/st2 signaling
8
plasticity homeostasis
8
hippocampal circuitry
8
hippocampal circuits
8
hippocampal synaptic
8
synaptic
6
hippocampal
6
signaling regulates
4

Similar Publications

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

Brain connectivity, neural networks, and resilience in aging and neurodegeneration.

Am J Pathol

January 2025

Center for the Neural Basis of Cognition; Department of Pathology; Department of Bioengineering; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:

The importance of complex systems has become increasingly evident in recent years. The nervous system is one such example with neural networks sitting at the intersection of complex networks and biology. A particularly exciting feature is the resilience of complex systems.

View Article and Find Full Text PDF

Emerging roles for tubulin PTMs in neuronal function and neurodegenerative disease.

Curr Opin Neurobiol

January 2025

Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA. Electronic address:

Neurons are equipped with microtubules of different stability with stable and dynamic domains often coexisting on the same microtubule. While dynamic microtubules undergo random transitions between disassembly and assembly, stable ones persist long enough to serve as platforms for tubulin-modifying enzymes (known as writers) that attach molecular components to the α- or β-tubulin subunits. The combination of these posttranslational modifications (PTMs) results in a "tubulin code," dictating the behavior of selected proteins (known as readers), some of which were shown to be crucial for neuronal function.

View Article and Find Full Text PDF

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!