Understanding the factors governing the formation of supramolecular structures and phase transitions between various forms of molecular crystals is pivotal for developing dynamic, stimuli-responsive materials and polymorph-controlled syntheses. Here, we investigate the pressure-induced dynamic of both the intrinsic molecular structure and the supramolecular network of a predesigned polyhedral oxo-centered zinc cluster incorporating monoanionic N,N'-diphenylformamidinate and featuring N-bonded phenyl groups in close proximity to the primary coordination sphere. We demonstrate that the model oxo cluster is prone to undergoing pressure-induced conformational transformations of the secondary coordination sphere and simultaneous stepwise (initially every second polyhedral molecule undergoes the conformational transformations) and reversible transitions from an ambient phase α to high-pressure phases β and γ, as single-crystal-to-single-crystal events. The observed phase transitions illustrate the key role of an interplay between the low-energy conformation perturbations and cooperative intra- and intermolecular noncovalent interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202101732 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!