We report near-deterministic generation of two-dimensional (2D) matter-wave Townes solitons and a precision test on scale invariance in attractive 2D Bose gases. We induce a shape-controlled modulational instability in an elongated 2D matter wave to create an array of isolated solitary waves of various sizes and peak densities. We confirm scale invariance by observing the collapse of solitary-wave density profiles onto a single curve in a dimensionless coordinate rescaled according to their peak densities and observe that the scale-invariant profiles measured at different coupling constants g can further collapse onto the universal profile of Townes solitons. The reported scaling behavior is tested with a nearly 60-fold difference in soliton interaction energies and allows us to discuss the impact of a non-negligible magnetic dipole-dipole interaction (MDDI) on 2D scale invariance. We confirm that the effect of MDDI in our alkali cesium quasi-2D samples effectively conforms to the same scaling law governed by a contact interaction to well within our experiment uncertainty.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.127.023604 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!