A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Radial Two-Dimensional Ion Crystals in a Linear Paul Trap. | LitMetric

Radial Two-Dimensional Ion Crystals in a Linear Paul Trap.

Phys Rev Lett

Indiana University Department of Physics, Bloomington, Indiana 47405, USA and Indiana University Quantum Science and Engineering Center, Bloomington, Indiana 47405, USA.

Published: July 2021

We experimentally study two-dimensional (2D) Coulomb crystals in the "radial-2D" phase of a linear Paul trap. This phase is identified by a 2D ion lattice aligned entirely with the radial plane and is created by imposing a large ratio of axial to radial trapping potentials. Using arrays of up to 19 ^{171}Yb^{+} ions, we demonstrate that the structural phase boundaries of such crystals are well described by the pseudopotential approximation, despite the time-dependent ion positions driven by intrinsic micromotion. We further observe that micromotion-induced heating of the radial-2D crystal is confined to the radial plane. Finally, we verify that the transverse motional modes, which are used in most ion-trap quantum simulation schemes, are well-predictable numerically and remain decoupled and cold in this geometry. Our results establish radial-2D ion crystals as a robust experimental platform for realizing a variety of theoretical proposals in quantum simulation and computation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.020503DOI Listing

Publication Analysis

Top Keywords

ion crystals
8
linear paul
8
paul trap
8
radial plane
8
quantum simulation
8
radial
4
radial two-dimensional
4
ion
4
two-dimensional ion
4
crystals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!