Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)] (bpmp = 2,6-bis(2-pyridylmethyl)pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic DO solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)] and its facile reduction to [Cr(bpmp)] result in a high excited state redox potential. The ligand's methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)] charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c05971 | DOI Listing |
Sci Rep
December 2024
Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
A thermochromic pigment, derived from reaction of ethylenediamine and rhodamine B known as MA-RB, has been successfully developed. This pigment showcases temperature-controlled visible color-transformation properties in both solid and solution states. The thermochromic pigment MA-RB exhibits a notable color change from light pink to rose red, triggered by thermal excitation.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering.
View Article and Find Full Text PDFNat Comput Sci
December 2024
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties.
View Article and Find Full Text PDFPhotochem Photobiol Sci
December 2024
Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan.
The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
Background -Smoking is associated with arrhythmia and sudden cardiac death, but the biological mechanisms remain unclear. In electrocardiogram (ECG) recordings abnormal durations of ventricular repolarization (QT interval), atrial depolarization (P wave), and atrioventricular depolarization (PR interval and segment), predict cardiac arrhythmia and mortality. Previous analyses of the National Health and Nutrition Examination Survey (NHANES) database for associations between smoking and ECG abnormalities were incomplete.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!