In order to study the regulation mechanism of secondary metabolites biosynthesis in Lonicera macranthoides, the key genes involved in the regulation of biosynthesis and the mechanism of differential metabolites were explored. In this study, high-throughput sequencing technology was used for transcriptome sequencing of L. macranthoides at different development stages. By using Liquid chromatography-tandem mass spectrometry(LC-MS/MS) technology, the laws of qualitative, quantitative and synthetic accumulation of its metabolites were studied, and the key enzyme genes for the biosynthesis of phenolic acid and flavonoids were screened out according to the differentially expressed genes. A total of 111 differentially accumulate metabolites(DAM) and 6 653 differentially expressed genes(DGE) were obtained by metabonomics and transcriptomics analysis. The metabolites and key enzyme genes in the Erqing(KE) were significantly different from those in the Dabai(KD) and Yinhua(KY) stages. In the phenylalanine biosynthesis pathway, the ion abundance of chlorogenic acid, naringin, quercetin, rutin, coniferol and other metabolites decreased with the development of flowers, while the ion abundance of ferulic acid, coumarin and syringoside increased with the development of flowers. Key enzyme genes such as CHS, HCT, CCR, FLS and COMT positively regulate the downstream metabolites, while PAL, C4H and 4CL negatively regulate the downstream metabolites. This study provides candidate genes and theoretical basis for the further exploration of key enzymes in the biosynthesis of secondary metabolites and for the regulation of the accumulation of secondary metabolites in L. macranthoides by molecular biological methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20210227.101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!