Melanoma is an aggressive type of cancer originating from the skin that arises from neoplastic changes in melanocytes. Transforming growth factor‑β (TGF‑β) is a pleiotropic cytokine and is known to contribute to melanoma progression by inducing the epithelial‑mesenchymal transition (EMT) program and creating an environment that favors tumor progression. There are three TGF‑β isoforms, TGF‑β1, TGF‑β2 and TGF‑β3, all of which engage in pro‑tumorigenic activities by activating SMAD signaling pathways. All TGF‑β isoforms activate signaling pathways by binding to their TGF‑β type I (TβRI) and type II (TβRII) receptors. Thus, effective targeting of all TGF‑β isoforms is of great importance. In the present study, chimeric proteins comprising the extracellular domains of TβRI and/or TβRII fused with the Fc portion of human immunoglobulin (IgG) were validated in the melanoma context. The Fc chimeric receptor comprising both TβRI and TβRII (TβRI‑TβRII‑Fc) effectively trapped all TGF‑β isoforms. Conversely, TβRII‑Fc chimeric receptor, that comprises TβRII only, was able to interact with TGF‑β1 and TGF‑β3 isoforms, but not with TGF‑β2, which is a poor prognostic factor for melanoma patients. Accordingly, it was revealed that TβRI‑TβRII‑Fc chimeric receptor suppressed the EMT program in melanoma cells induced by any of the three TGF‑β isoforms, as revealed by decreased expression of mesenchymal markers. Conversely, TβRII‑Fc chimeric receptor inhibited the EMT program induced by TGF‑β1 and TGF‑β3. In addition, it was established that tumor growth in subcutaneous mouse melanoma was inhibited by TβRI‑TβRII‑Fc chimeric receptor indicating that Fc chimeric receptor could be applied to modify the tumor microenvironment (TME) of melanoma. Therefore, designing of Fc chimeric receptors targeting TGF‑β signals that affect various components of the TME may result in the development of effective anti‑melanoma agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317165PMC
http://dx.doi.org/10.3892/or.2021.8148DOI Listing

Publication Analysis

Top Keywords

chimeric receptor
28
tgf‑β isoforms
20
emt program
12
chimeric
9
transforming growth
8
growth factor‑β
8
tgf‑β
8
three tgf‑β
8
signaling pathways
8
targeting tgf‑β
8

Similar Publications

Mechanisms for resistance to BCMA-targeted immunotherapies in multiple myeloma.

Blood Rev

January 2025

Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China. Electronic address:

Multiple myeloma (MM) remains incurable and patients eventually face the relapse/refractory dilemma. B cell maturation antigen (BCMA)-targeted immunotherapeutic approaches have shown great effectiveness in patients with relapsed/refractory MM, mainly including chimeric antigen receptor T cells (CAR-T), bispecific T cell engagers (TCEs), and antibody-drug conjugates (ADCs). However, their impact on long-term survival remains to be determined.

View Article and Find Full Text PDF

A rapidly growing number of chimeric antigen receptors (CARs) is being translated into cell therapy for malignant and autoimmune diseases. While cancer cell-selective CAR targeting is undergoing continuous refinement, specific testing for overlooked recognition of healthy tissues is commonly not performed, which potentially results in underestimating of the risk of severe tissue damage upon CAR T cell application. Using the FcμR/IgM receptor/FAIM3/TOSO-specific CAR, designed to target chronic lymphocytic leukemia cells, we exemplarily outline a screen to uncover reactivities to healthy tissues and discuss the value of such pre-clinical testing to improve safety in CAR T cell application.

View Article and Find Full Text PDF

PD1-TLR10 fusion protein enhances the antitumor efficacy of CAR-T cells in colon cancer.

Int Immunopharmacol

January 2025

TriArm Therapeutics, Niudun Road 200, 201203 Shanghai, China. Electronic address:

Background: The immunosuppressive microenvironment negatively affects the efficacy of chimeric antigen receptor T (CAR-T) cells in solid tumors. Fusion protein that combining extracellular domain of inhibitory checkpoint protein and the cytoplasmic domain of stimulatory molecule may improve the efficacy of CAR-T cells by reversing the suppressive signals.

Methods: To generate optimal PD1-TLR10 fusion proteins, PD1 extracellular domain and TLR10 intracellular domain were connected by transmembrane domain from PD1, CD28, or TLR10, respectively.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic, autoimmune inflammatory disease with a multisystem manifestation and a variety of clinical symptoms. Over the last decades, the prognosis and life expectancy of patients with SLE improved significantly due to the implementation of corticosteroids combined with immunosuppressive agents. Nevertheless, the use of these medications is often associated with the occurrence of serious side effects and additional deterioration of organ function.

View Article and Find Full Text PDF

The approval of chimeric antigen receptor (CAR) T cell therapies for the treatment of hematological cancers has marked a new era in cancer care, with seven products being FDA approved since 2017. However, challenges remain, and while profound effects are observed initially in myeloma, the majority of patients relapse, which is concomitant with poor CAR T cell persistence. Similarly, the efficacy of CAR T cell therapy is limited in solid tumors, largely due to tumor antigen heterogeneity, immune evasion mechanisms, and poor infiltration and persistence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!