Discovery of genomic variation across a generation.

Hum Mol Genet

The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.

Published: October 2021

Over the past 30 years (the timespan of a generation), advances in genomics technologies have revealed tremendous and unexpected variation in the human genome and have provided increasingly accurate answers to long-standing questions of how much genetic variation exists in human populations and to what degree the DNA complement changes between parents and offspring. Tracking the characteristics of these inherited and spontaneous (or de novo) variations has been the basis of the study of human genetic disease. From genome-wide microarray and next-generation sequencing scans, we now know that each human genome contains over 3 million single nucleotide variants when compared with the ~ 3 billion base pairs in the human reference genome, along with roughly an order of magnitude more DNA-approximately 30 megabase pairs (Mb)-being 'structurally variable', mostly in the form of indels and copy number changes. Additional large-scale variations include balanced inversions (average of 18 Mb) and complex, difficult-to-resolve alterations. Collectively, ~1% of an individual's genome will differ from the human reference sequence. When comparing across a generation, fewer than 100 new genetic variants are typically detected in the euchromatic portion of a child's genome. Driven by increasingly higher-resolution and higher-throughput sequencing technologies, newer and more accurate databases of genetic variation (for instance, more comprehensive structural variation data and phasing of combinations of variants along chromosomes) of worldwide populations will emerge to underpin the next era of discovery in human molecular genetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490016PMC
http://dx.doi.org/10.1093/hmg/ddab209DOI Listing

Publication Analysis

Top Keywords

human genome
8
genetic variation
8
human reference
8
human
7
variation
5
genome
5
discovery genomic
4
genomic variation
4
variation generation
4
generation 30 years
4

Similar Publications

Integrative bioinformatics approach identifies novel drug targets for hyperaldosteronism, with a focus on SHMT1 as a promising therapeutic candidate.

Sci Rep

January 2025

Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Shangcheng District, Hangzhou, 310000, Zhejiang Province, China.

Primary aldosteronism (PA), characterized by autonomous aldosterone overproduction, is a major cause of secondary hypertension with significant cardiovascular complications. Current treatments mainly focus on symptom management rather than addressing underlying mechanisms. This study aims to discover novel therapeutic targets for PA using integrated bioinformatics and experimental validation approaches.

View Article and Find Full Text PDF

Chromosome-level genome assembly, annotation, and population genomic resource of argali (Ovis ammon).

Sci Data

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.

Argali stands as the largest species among wild sheep in Central and East Asia, with a concerning rate of decline estimated at 30%. The intraspecific taxonomy of argali remains contentious due to limited genomic data and unclear geographic separation. In this study, we constructed a chromosome-level genome assembly and annotation for the Tibetan argali (O.

View Article and Find Full Text PDF

The Homo sapiens Chromosomal Location Ontology (HSCLO) is designed to facilitate the integration of human genomic features into biomedical knowledge graphs from releases GRCh37 and GRCh38 at multiple resolutions. HSCLO comprises two distinct versions, HSCLO37 and HSCLO38, each tailored to its respective human genome release. This ontology supports the efficient integration and analysis of human genomic data across scales ranging from entire chromosomes to individual base pairs, thereby enhancing data retrieval and interoperability within large-scale biomedical datasets.

View Article and Find Full Text PDF

DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders.

Am J Hum Genet

January 2025

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany. Electronic address:

BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!