Stuttering is a neurodevelopmental disorder characterized by impaired production of coordinated articulatory movements needed for fluent speech. It is currently unknown whether these abnormal production characteristics reflect disruptions to brain mechanisms underlying the acquisition and/or execution of speech motor sequences. To dissociate learning and control processes, we used a motor sequence learning paradigm to examine the behavioral and neural correlates of learning to produce novel phoneme sequences in adults who stutter (AWS) and neurotypical controls. Participants intensively practiced producing pseudowords containing non-native consonant clusters (e.g., "gvasf") over two days. The behavioral results indicated that although the two experimental groups showed comparable learning trajectories, AWS performed significantly worse on the task prior to and after speech motor practice. Using functional magnetic resonance imaging (fMRI), the authors compared brain activity during articulation of the practiced words and a set of novel pseudowords (matched in phonetic complexity). FMRI analyses revealed no differences between AWS and controls in cortical or subcortical regions; both groups showed comparable increases in activation in left-lateralized brain areas implicated in phonological working memory and speech motor planning during production of the novel sequences compared to the practiced sequences. Moreover, activation in left-lateralized basal ganglia sites was negatively correlated with in-scanner mean disfluency in AWS. Collectively, these findings demonstrate that AWS exhibit no deficit in constructing new speech motor sequences but do show impaired execution of these sequences before and after they have been acquired and consolidated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294667PMC
http://dx.doi.org/10.1162/nol_a_00027DOI Listing

Publication Analysis

Top Keywords

speech motor
20
behavioral neural
8
neural correlates
8
motor sequence
8
sequence learning
8
motor sequences
8
groups comparable
8
activation left-lateralized
8
speech
6
motor
6

Similar Publications

Preoperative mapping techniques for brain tumor surgery: a systematic review.

Front Oncol

January 2025

Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

Accurate preoperative mapping is crucial for maximizing tumor removal while minimizing damage to critical brain functions during brain tumor surgery. Navigated transcranial magnetic stimulation (nTMS), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) are established methods for assessing motor and language function. Following PRISMA guidelines, this systematic review analyzes the reliability, clinical utility, and accessibility of these techniques.

View Article and Find Full Text PDF

Speech comprehension involves the dynamic interplay of multiple cognitive processes, from basic sound perception, to linguistic encoding, and finally to complex semantic-conceptual interpretations. How the brain handles the diverse streams of information processing remains poorly understood. Applying Hidden Markov Modeling to fMRI data obtained during spoken narrative comprehension, we reveal that the whole brain networks predominantly oscillate within a tripartite latent state space.

View Article and Find Full Text PDF

Background: X-linked intellectual disability (XLID) is a genetically heterogeneous disorder that results in cognitive impairment and developmental delays. Mutations in the KDM5C gene have been identified as a causative factor in XLID. This study aimed to identify novel variants associated with XLID and to investigate the clinical and genetic characteristics of XLID patients with mutations in the KDM5C gene.

View Article and Find Full Text PDF

CTNNB1 syndrome mouse models.

Mamm Genome

January 2025

The Gene Therapy Research Institute, CTNNB1 Foundation, Ljubljana, 1000, Slovenia.

CTNNB1 syndrome is a rare neurodevelopmental disorder, affecting children worldwide with a prevalence of 2.6-3.2 per 100,000 births and often misdiagnosed as cerebral palsy.

View Article and Find Full Text PDF

Description: In July 2024, the U.S. Department of Veterans Affairs (VA) and U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!