There is a dearth of studies examining the underlying mechanisms of blink suppression and the effects of urge and reward, particularly those measuring subsecond electroencephalogram (EEG) brain dynamics. To address these issues, we designed an EEG study to ask 3 questions: 1) How does urge develop? 2) What are EEG-correlates of blink suppression? 3) How does reward change brain dynamics related to urge suppression? This study examined healthy children ( = 26, age 8-12 years) during blink suppression under 3 conditions: blink freely (i.e., no suppression), blink suppressed, and blink suppressed for reward. During suppression conditions, children used a joystick to indicate their subjective urge to blink. Results showed that 1) half of the trials were associated with clearly defined urge time course of ~7 s, which was accompanied by EEG delta (1-4 Hz) power reduction localized at anterior cingulate cortex (ACC); 2) the EEG correlates of blink suppression were found in left prefrontal theta (4-8 Hz) power elevation; and 3) reward improved blink suppression performance while reducing the EEG delta power observed in ACC. We concluded that the empirically supported urge time course and underlying EEG modulations provide a subsecond chronospatial model of the brain dynamics during urge- and reward-mediated blink suppression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153050PMC
http://dx.doi.org/10.1093/texcom/tgaa046DOI Listing

Publication Analysis

Top Keywords

blink suppression
24
brain dynamics
12
blink
11
suppression
8
urge reward
8
suppression conditions
8
blink suppressed
8
urge time
8
time course
8
eeg delta
8

Similar Publications

Colloidal quantum dots (QDs) are promising emitters for biological applications because of their excellent fluorescence, convenient surface modification, and photostability. However, the toxic cadmium composition in the state-of-the-art QDs and their inferior properties in the aqueous phase greatly restrict further use. The performance of water-soluble indium phosphide (InP) QDs lags far behind those of Cd-containing counterparts due to the lack of effective surface protection.

View Article and Find Full Text PDF

In the attentional blink paradigm, participants attempt to identify two targets appearing in a rapidly presented stream of distractors. Report accuracy is typically high for the first target (T1) while identification of the second target (T2) is impaired when it follows within about 200-400 ms of T1. An important question is whether T2 is processed to a semantic level even when participants are unaware of its identity.

View Article and Find Full Text PDF

The fact that blinks occur more often than necessary for ocular lubrication has led to the proposal that blinks are involved in altering some aspects of visual cognition. Previous studies have suggested that blinking can modulate the alternation of different visual interpretations of the same stimulus, that is, perceptual alternation in multistable perception. This study investigated whether and how different types of blinks, spontaneous and voluntary, interact with perceptual alternation in a multistable perception paradigm called continuous flash suppression.

View Article and Find Full Text PDF

Botulinum toxin modulates the blink reflex via the trigeminal afferent system in hemifacial spasm: an early and late-term effect.

Neurol Sci

December 2024

Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey.

Background: There is growing evidence that botulinum neurotoxin (BoNT) can mediate changes at the central level through peripheral mechanisms, leading to alterations in central sensorimotor integration. However, the effect of BoNT on brainstem excitability in patients with hemifacial spasm(HFS) is not yet fully understood, and its long-term effects remain unknown.

Objective: This study aims to investigate the impact of BoNT on the excitability of the facial nucleus in patients with idiopathic HFS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!