Many organisms use genetic self-recognition systems to distinguish themselves from conspecifics. In the cnidarian, , self-recognition is partially controlled by (). encodes a highly polymorphic transmembrane protein that discriminates self from nonself by binding to other Alr2 proteins with identical or similar sequences. Here, we focused on the N-terminal domain of Alr2, which can determine its binding specificity. We pair ancestral sequence reconstruction and experimental assays to show that amino acid substitutions can create sequences with novel binding specificities either directly (via one mutation) or via sequential mutations and intermediates with relaxed specificities. We also show that one side of the domain has experienced positive selection and likely forms the binding interface. Our results provide direct evidence that point mutations can generate Alr2 proteins with novel binding specificities. This provides a plausible mechanism for the generation and maintenance of functional variation in nature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282982 | PMC |
http://dx.doi.org/10.1016/j.isci.2021.102811 | DOI Listing |
Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Florida / Center for Translational Research in Neurodegenerative Disease, Gainesville, FL, USA.
Background: Vaxxinity is developing an active immunotherapy targeting Tau for Alzheimer's disease (AD) and other tauopathies. VXX-301 is a multi-epitope vaccine designed to target the N-terminal and repeat domains of Tau. This design enables targeting multiple forms of Tau thought to contribute to Tau associated pathologies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Washington University School of Medicine, St. Louis, MO, USA.
Background: Alzheimer's disease neuropathology involves the deposition in brain of aggregates enriched with microtubule-binding-region (MTBR) of tau adopting an abnormal conformation between residues 306-378 in the core of aggregates. Anti-tau drugs targeting around this domain have the potential to interfere with the cell-to-cell propagation of pathological tau. Bepranemab is a humanized monoclonal Ig4 antibody binding to tau residues 235-250.
View Article and Find Full Text PDFBackground: Small, soluble oligomers, rather than mature fibrils, are the major neurotoxic agents in Alzheimer's disease (AD). In the last few years, Aprile and co-workers designed and purified a single-domain antibody (sdAb), called DesAb-O, with high specificity for Aβ oligomeric conformers. Recently, Cascella and co-workers showed that DesAb-O can selectively detect synthetic Aβ oligomers both in vitro and in cultured cells, neutralizing their associated neuronal dysfunction.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Focusing on novel AD treatments, the TREAT-AD centers offer an array of free research tools, shared via the AD Knowledge Portal in a Target Enablement Package (TEP). This abstract showcases the research conducted by the IUSM-Purdue TREAT-AD Center, specifically focusing on Targeting class-II PI3K's as a potential breakthrough in AD therapy. Endocytosis within the brain encompasses diverse pathways for internalizing extracellular cargoes and receptors into cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!