Astrocytes are recognized to be a heterogeneous population of cells that differ morphologically, functionally, and molecularly. Whether this heterogeneity results from generation of distinct astrocyte cell lineages, each functionally specialized to perform specific tasks, remains an open question. In this study, we used RNA sequencing analysis to determine the global transcriptome profile of the Olig2-expressing astrocyte subtype (Olig2-AS), a specific spinal astrocyte subtype that segregates early during development from Olig2 progenitors and differs from other spinal astrocytes by the expression of Olig2. We identified 245 differentially expressed genes. Among them, 135 exhibit higher levels of expression when compared with other populations of spinal astrocytes, indicating that these genes can serve as a "unique" functional signature of Olig2-AS. Among them, we identify two genes, and , as specific molecular markers of the Olig2-AS in the P7 spinal cord. Our work thus reveals that Olig2 progenitors produce a unique spinal astrocyte subtype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8281609 | PMC |
http://dx.doi.org/10.1016/j.isci.2021.102806 | DOI Listing |
Background: Age‐related neurodegenerative disorders (NDDs) continuum includes late‐onset Alzheimer’s disease (LOAD), Dementia with Lewy bodies (DLB), and Parkinson’s disease (PD) exhibit shared and distinct clinicopathological characteristics. Each of the different NDDs is characterized by a complex genetic etiology and although numerous loci have been identified via GWAS, and the causal genes and the specific neuronal and glial cell subtypes through which they exert their pathogenic effects are yet to be fully elucidated. We aimed to untangle the genetic complexity of NDDs, and to identify shared and distinct biological pathways and disease driver cell‐subtypes across NDDs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA; NYU, New York City, NY, USA
Background: Astrocytes, a major glial cell in the central nervous system (CNS), can become reactive in response to inflammation or injury, and release toxic factors that kill specific subtypes of neurons. Over the past several decades, many groups report that reactive astrocytes are present in the brains of patients with Alzheimer’s disease, as well as several other neurodegenerative diseases. In addition, reactive astrocyte sub‐types most associated with these diseases are now reported to be present during CNS cancers of several types.
View Article and Find Full Text PDFThis study characterizes a fluorescent -tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes.
View Article and Find Full Text PDFNat Aging
January 2025
Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
Traditional approaches to studying astrocyte heterogeneity have mostly focused on analyzing static properties, failing to identify whether subtypes represent intermediate or final states of reactive astrocytes. Here we show that previously proposed neuroprotective and neurotoxic astrocytes are transitional states rather than distinct subtypes, as revealed through time-series multiomic sequencing. Neuroprotective astrocytes are an intermediate state of the transition from a nonreactive to a neurotoxic state in response to neuroinflammation, a process regulated by the mTOR signaling pathway.
View Article and Find Full Text PDFNature
January 2025
The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
The development of the human neocortex is highly dynamic, involving complex cellular trajectories controlled by gene regulation. Here we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and the primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!