Introduction: There is an urgent need to develop effective interventional treatments for people with Alzheimer's disease (AD). AD results from a complex multi-decade interplay of multiple interacting dysfunctional biological systems that have not yet been fully elucidated. Epidemiological studies have linked several modifiable lifestyle factors with increased incidence for AD. Because monotherapies have failed to prevent or ameliorate AD, interventional studies should deploy multiple, targeted interventions that address the dysfunctional systems that give rise to AD.

Methods: This randomized controlled trial (RCT) will examine the efficacy of a 12-month personalized, multimodal, lifestyle intervention in 60 mild cognitive impairment (MCI) and early stage AD patients (aged 50+, amyloid positivity). Both groups receive data-driven, lifestyle recommendations designed to target multiple systemic pathways implicated in AD. One group receives these personalized recommendations without coaching. The other group receives personalized recommendations with health coaching, dietary counseling, exercise training, cognitive stimulation, and nutritional supplements. We collect clinical, proteomic, metabolomic, neuroimaging, and genetic data to fuel systems-biology analyses. We will examine effects on cognition and hippocampal volume. The overarching goal of the study is to longitudinally track biological systems implicated in AD to reveal the dynamics between these systems during the intervention to understand differences in treatment response.

Results: We have developed and implemented a protocol for a personalized, multimodal intervention program for early AD patients. We began enrollment in September 2019; we have enrolled a third of our target (20 of 60) with a 95% retention and 86% compliance rate.

Discussion: This study presents a paradigm shift in designing multimodal, lifestyle interventions to reduce cognitive decline, and how to elucidate the biological systems being targeted. Analytical efforts to explain mechanistic or causal underpinnings of individual trajectories and the interplay between multi-omic variables will inform the design of future hypotheses and development of effective precision medicine trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290633PMC
http://dx.doi.org/10.1002/trc2.12191DOI Listing

Publication Analysis

Top Keywords

personalized multimodal
12
multimodal lifestyle
12
biological systems
12
lifestyle intervention
8
alzheimer's disease
8
will examine
8
group receives
8
receives personalized
8
personalized recommendations
8
personalized
5

Similar Publications

Purpose: The main objective of this study was to conduct a radioanatomical study of the osteo-myo-cutaneous scapulo-dorsal pedicled flap.

Methods: A radiological study was performed to study the anatomical variations of the dorsal scapular pedicle (origin, course of the deep branch of the dorsal scapular artery (DSA) in relation to the medial border of the scapula, perforators from the superficial branch of the DSA). Perforators from the superficial branch of the DSA were also identified on anatomical subjects, and their cutaneous vascular territory was determined.

View Article and Find Full Text PDF

Intercostal neuralgia can be debilitating and extremely difficult to treat despite multi-modal therapies. The literature describing the role of neuromodulation in patients with intercostal neuralgia is scarce. In this medically challenging case report, we describe a 56-year-old male with a near complete resolution of intractable chronic intercostal neuralgia, secondary to traumatic rib fractures and multiple surgical interventions, with a single lead thoracic spinal cord stimulator (SCS) implant.

View Article and Find Full Text PDF

Introduction: With the intensification of global aging, health management for the older adult has become a significant societal concern. Addressing challenges such as data diversity, health status complexity, long-term dependence, and data privacy is crucial for predicting older adult health behaviors.

Methods: This study designs and implements a smart older adult care service model incorporating modules like multimodal data fusion, data loss processing, nonlinear prediction, emergency detection, and privacy protection.

View Article and Find Full Text PDF

Introduction: Medical simulation education has expanded in the remote learning sphere, providing educational opportunities to under-resourced areas and the ability to engage learners limited by time or geographic location. Pediatric resuscitation training has historically been in-person relying on Pediatric Advanced Life Support (PALS) algorithms, yet many pediatric providers are often faced with treating adult or adult-sized patients. Our goal was to develop a tele-simulation remote learning module highlighting possible diagnoses and scenarios that require adult treatment-minded approaches for the pediatric clinician, including the use of Advanced Cardiac Life Support (ACLS) algorithms.

View Article and Find Full Text PDF

Purpose: Accurately predicting the expected duration of time until total knee replacement (time-to-TKR) is crucial for patient management and health care planning. Predicting when surgery may be needed, especially within shorter windows like 3 years, allows clinicians to plan timely interventions and health care systems to allocate resources more effectively. Existing models lack the precision for such time-based predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!