extract and its ability to encounter AGEs-induced neurotoxicity in SH-SY5Y.

Toxicol Res

Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand.

Published: July 2021

Abstract: Advanced glycation end products (AGEs) upon binding to its receptor (receptor for AGEs, RAGE) trigger several pathological processes involving oxidative stress and inflammatory pathway which play a pivotal role in various degenerative diseases including Alzheimer's disease. () has long been reported to be used as a traditional herbal medicine; nonetheless, very few studies have been reported. In this study, the protective effects of extract on neurotoxicity of hippocampal neuronal cells (SH-SY5Y) was investigated. When compared to normal control, AGEs treatment significantly induced oxidative stress level and enhanced NF-κB translocation to nucleus in the neuronal cells ( < 0.05). The increase in NF-κB translocation leads to increase in transcription level of the target genes including RAGE and pro-inflammatory cytokines which include interleukin 1 beta (IL1B), tumor necrosis factor-alpha (TNFA) and interleukin 6 (IL6). Pre-treatment of SH-SY5Y with the extracts of shows favorable results by significantly suppressing oxidative stress level ( < 0.05) as well transcriptional level of RAGE ( < 0.05) and pro-inflammatory cytokines ( < 0.05). Chemical analysis of extracts using High Resolution Liquid Chromatograph Mass Spectrometer (HR-LCMS) and Gas Chromatograph with high resolution Mass Spectrometer (GC-HRMS) suggested some potential active phytochemical compounds. The results from this study may provide possible alternative treatment for prevention and/or therapy of neurodegenerative disorders by targeting the above-mentioned pathways. The role of the phytochemical active ingredient (s) in inhibiting the AGEs-triggered signaling inflammatory pathway should be investigated in future study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249652PMC
http://dx.doi.org/10.1007/s43188-020-00072-zDOI Listing

Publication Analysis

Top Keywords

oxidative stress
8
neuronal cells
8
extract ability
4
ability encounter
4
encounter ages-induced
4
ages-induced neurotoxicity
4
neurotoxicity sh-sy5y
4
sh-sy5y abstract
4
abstract advanced
4
advanced glycation
4

Similar Publications

Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.

View Article and Find Full Text PDF

HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation.

Mol Med

December 2024

Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.

Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

View Article and Find Full Text PDF

ALDH2 Plays a Role in Spermatogenesis and Male Fertility by Regulating Oxidative Stress in Mice.

Exp Cell Res

December 2024

School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China. Electronic address:

Spermatogenesis and sperm maturation are complex biological processes that involve intricate cellular and molecular interactions. The Aldh2 gene is involved in the metabolism of specific aldehydes generated by oxidative stress. Aldh2 is abundantly expressed in the testis and epididymis; however, the specific role of Aldh2 in regulating spermatogenesis and sperm maturation remains unclear.

View Article and Find Full Text PDF

Pharmacological blockade of infection chronification modulates oxy-inflammation and prevents the activation of stress-induced premature senescence markers in schistosomiasis.

Microb Pathog

December 2024

Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.

Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!