Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In scanning field emission microscopy (SFEM), a tip (the source) is approached to few (or a few tens of) nanometres distance from a surface (the collector) and biased to field-emit electrons. In a previous study (Zanin 2016 , 20160475. (doi:10.1098/rspa.2016.0475)), the field-emitted current was found to change by approximately 1% at a monatomic surface step (approx. 200 pm thick). Here we prepare surface domains of adjacent different materials that, in some instances, have a topographic contrast smaller than 15 pm. Nevertheless, we observe a contrast in the field-emitted current as high as 10%. This non-topographic collector material dependence is a yet unexplored degree of freedom calling for a new understanding of the quantum mechanical tunnelling barrier at the source site that takes into account the properties of the material at the collector site.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278050 | PMC |
http://dx.doi.org/10.1098/rsos.210511 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!