Human visual cortex is organized into several functional regions/areas. Identifying these visual areas of the human brain (i.e., V1, V2, V4, etc) is an important topic in neurophysiology and vision science. Retinotopic mapping via functional magnetic resonance imaging (fMRI) provides a non-invasive way of defining the boundaries of the visual areas. It is well known from neurophysiology studies that retinotopic mapping is diffeomorphic within each local area (i.e. locally smooth, differentiable, and invertible). However, due to the low signal-noise ratio of fMRI, the retinotopic maps from fMRI are often not diffeomorphic, making it difficult to delineate the boundaries of visual areas. The purpose of this work is to generate diffeomorphic retinotopic maps and improve the accuracy of the retinotopic atlas from fMRI measurements through the development of a specifically designed registration procedure. Although there are sophisticated existing cortical surface registration methods, most of them cannot fully utilize the features of retinotopic mapping. By considering unique retinotopic mapping features, we form a quasiconformal geometry-based registration model and solve it with efficient numerical methods. We compare our registration with several popular methods on synthetic data. The results demonstrate that the proposed registration is superior to conventional methods for the registration of retinotopic maps. The application of our method to a real retinotopic mapping dataset also results in much smaller registration errors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293962 | PMC |
http://dx.doi.org/10.1109/isbi45749.2020.9098386 | DOI Listing |
Neuroimage
January 2025
Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Pudong New District, 200124, Shanghai, China; Center for Neural Science, New York University, 4 Washington Place, NY, 10003, NY, USA; NYU-ECNU Institute of Brain and Cognitive Science, 3663 Zhongshan Road North, Putuo District, 200062, Shanghai, China. Electronic address:
BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF ("quick PRF"), a system for accelerated PRF modeling that reduced the computation time by a factor ¿1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al.
View Article and Find Full Text PDFJ Vis
January 2025
Department of Psychology, University of Washington, Seattle, WA, USA.
The population receptive field (pRF) method, which measures the region in visual space that elicits a blood-oxygen-level-dependent (BOLD) signal in a voxel in retinotopic cortex, is a powerful tool for investigating the functional organization of human visual cortex with fMRI (Dumoulin & Wandell, 2008). However, recent work has shown that pRF estimates for early retinotopic visual areas can be biased and unreliable, especially for voxels representing the fovea. Here, we show that a log-bar stimulus that is logarithmically warped along the eccentricity dimension produces more reliable estimates of pRF size and location than the traditional moving bar stimulus.
View Article and Find Full Text PDFJ Neurosci
January 2025
National Eye Institute, Bethesda, Maryland 20892
Primate vision relies on retinotopically organized cortical parcels defined by representations of hemifield (upper vs lower visual field), eccentricity (fovea vs periphery), and area (V1, V2, V3, V4). Here we test for functional signatures of these organizing principles. We used functional magnetic resonance imaging to measure responses to gratings varying in spatial frequency, color, and saturation across retinotopically defined parcels in two macaque monkeys, and we developed a Sparse Supervised Embedding (SSE) analysis to identify stimulus features that best distinguish cortical parcels from each other.
View Article and Find Full Text PDFImaging Neurosci (Camb)
October 2024
Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States.
NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis (PCA) has been shown to selectively suppress thermal noise and improve the temporal signal-to-noise ratio (tSNR) in human functional magnetic resonance imaging (fMRI). However, the feasibility to improve data quality for rodent fMRI using NORDIC PCA remains uncertain. NORDIC PCA may also be particularly beneficial for improving topological brain mapping, as conventional mapping requires precise spatiotemporal signals from large datasets (ideally ~1 hour acquisition) for individual representations.
View Article and Find Full Text PDFTomography
September 2024
Key Laboratory of Language, Cognition and Computation of Ministry of Industry and Information Technology, School of Foreign Languages, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing 100081, China.
Studying causality relationships between different brain regions using the fMRI method has attracted great attention. To investigate causality relationships between different brain regions, we need to identify both the brain network structure and the influence magnitude. Most current methods concentrate on magnitude estimation, but not on identifying the connection or structure of the network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!