A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef. | LitMetric

The role of diazotrophs in coral physiology and reef biogeochemistry remains poorly understood, in part because N fixation rates and diazotrophic community composition have only been jointly analyzed in the tissue of one tropical coral species. We performed field-based N tracer incubations during nutrient-replete conditions to measure diazotroph-derived nitrogen (DDN) assimilation into three species of scleractinian coral (Pocillopora acuta, Goniopora columna, Platygyra sinensis). Using multi-marker metabarcoding (16S rRNA, nifH, 18S rRNA), we analyzed DNA- and RNA-based communities in coral tissue and skeleton. Despite low N fixation rates, DDN assimilation supplied up to 6% of the holobiont's N demand. Active coral-associated diazotrophs were chiefly Cluster I (aerobes or facultative anaerobes), suggesting that oxygen may control coral-associated diazotrophy. Highest N fixation rates were observed in the endolithic community (0.20 µg N cm per day). While the diazotrophic community was similar between the tissue and skeleton, RNA:DNA ratios indicate potential differences in relative diazotrophic activity between these compartments. In Pocillopora, DDN was found in endolithic, host, and symbiont compartments, while diazotrophic nifH sequences were only observed in the endolithic layer, suggesting a possible DDN exchange between the endolithic community and the overlying coral tissue. Our findings demonstrate that coral-associated diazotrophy is significant, even in nutrient-rich waters, and suggest that endolithic microbes are major contributors to coral nitrogen cycling on reefs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692400PMC
http://dx.doi.org/10.1038/s41396-021-01054-1DOI Listing

Publication Analysis

Top Keywords

fixation rates
16
rates diazotrophic
8
diazotrophic community
8
ddn assimilation
8
coral tissue
8
tissue skeleton
8
coral-associated diazotrophy
8
observed endolithic
8
endolithic community
8
coral
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!