Pectin is a plant-based heteropolysaccharide macromolecule predominantly found in the cell wall of plants. Pectin is commercially extracted from apple pomace, citrus peels and sugar beet pulp and is widely used in the food industry as a stabilizer, emulsifier, encapsulant, and gelling agent. This review highlights various parameters considered important for describing the inherent properties and biofunctionalities of pectins in food systems. These inherent descriptors include monosaccharide composition, galacturonic acid content, degree of esterification, molecular weight, structural morphology, functional group analysis, and functional properties, such as water and oil holding capacity, emulsification, foaming capacity, foam stability, and viscosity. In this study, we also delineate their potential as a nutraceutical, prebiotic, and carrier for bioactive compounds. The biofunctionalities of pectin as an anticancer, antioxidant, lipid-lowering, and antidiabetic agent are also conceptually elaborated in the current review. The multidimensional characteristics of pectin make it a potential candidate for use in food and biomedical science.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118319DOI Listing

Publication Analysis

Top Keywords

delineating inherent
4
inherent functional
4
functional descriptors
4
descriptors biofunctionalities
4
biofunctionalities pectic
4
pectic polysaccharides
4
pectin
4
polysaccharides pectin
4
pectin plant-based
4
plant-based heteropolysaccharide
4

Similar Publications

Source protection zone delineation has evolved over the past decades from fixed radius or analytical and numerical methods which do not consider uncertainty, to more complex stochastic numerical approaches. In this paper we explore options for delineating a source protection zone, while considering the inherent uncertainty involved in characterizing hydraulic conductivity. We consider a representative pumping well in an unconfined alluvial aquifer under steady-state flow conditions, with the hydraulic conductivity distribution inferred from borehole lithology data in the West Melton area near Christchurch, New Zealand.

View Article and Find Full Text PDF

Co-activation of distinct brain areas provides a valuable measure of functional interaction, or connectivity, between them. One well-validated way to investigate the co-activation patterns of a precise area is meta-analytic connectivity modeling (MACM), which performs a seed-based meta-analysis on task-based functional magnetic resonance imaging (task-fMRI) data. While MACM stands as a powerful automated tool for constructing robust models of whole-brain human functional connectivity, its inherent limitation lies in its inability to capture the distinct interrelationships among multiple brain regions.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a prevalent and critical complication of sepsis, marked by high incidence and mortality rates, with its pathogenesis still not being fully elucidated. Recent research has revealed a significant correlation between the metabolic reprogramming of glucose and sepsis-associated ALI (S-ALI). Throughout the course of S-ALI, immune cells, including macrophages and dendritic cells, undergo metabolic shifts to accommodate the intricate demands of immune function that emerge as sepsis advances.

View Article and Find Full Text PDF

The inherent heterogeneity of tumor cells impedes the development of targeted therapies for specific glioblastoma (GBM) subtypes. This study aims to investigate the mesenchymal subtype of GBM to uncover detailed characteristics, potential therapeutic strategies, and improve precision treatment for GBM patients. We integrated single-cell RNA sequencing (scRNA-seq), single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), and bulk RNA sequencing datasets to identify core gene modules, candidate therapeutic drugs, and key transcription factors specific to mesenchymal subtype GBM tumor cells which we validated in vitro and human samples.

View Article and Find Full Text PDF

Effective conservation strategies inherently depend on preserving populations, which in turn requires accurate tools for their detection. Beluga whales () inhabit the circumpolar Arctic and form discrete summer aggregations. Previous genetic studies using mitochondrial and microsatellite loci have delineated distinct populations associated to summer aggregations but the extent of dispersal and interbreeding among these populations remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!