Viscoelastic behaviour of rapid and slow self-healing hydrogels formed by densely branched arabinoxylans from Plantago ovata seed mucilage.

Carbohydr Polym

School of Chemical Engineering, University of Queensland, Brisbane, QLD 4076, Australia; School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, United Kingdom. Electronic address:

Published: October 2021

We report rheological characterisation of hydrogels formed by highly substituted brush-like arabinoxylans from Plantago ovata seed mucilage. Two arabinoxlyan fractions with similar molecular weight and linkage compositions are chosen to form gels with distinct rheological properties but a similar network structure. Small and large amplitude oscillatory shear rheology is used to characterise the sol-gel transition as a function of temperature and concentration. Differences in rheology and gelation of the two hydrogels are found to be associated with the different proportion of 'slow'- and 'fast'-dissociating junctions stabilised by hydrogen bonds, with the 'fast'-dissociating junctions playing an important role in rapid self-healing of the gel. Based on the temperature dependence of storage modulus and time-temperature superposition principle in combination with the Arrhenius equation, the activation energies of junction zone dissociation are estimated to be 402-480 kJ/mol and 97-144 kJ/mol for the 'slow' and 'fast' junction types, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118318DOI Listing

Publication Analysis

Top Keywords

hydrogels formed
8
arabinoxylans plantago
8
plantago ovata
8
ovata seed
8
seed mucilage
8
'fast'-dissociating junctions
8
viscoelastic behaviour
4
behaviour rapid
4
rapid slow
4
slow self-healing
4

Similar Publications

X-ray Responsive Antioxidant Drug-Free Hydrogel for Treatment of Radiation Skin Injury.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.

View Article and Find Full Text PDF

-Loaded Easily Injectable Hydrogel Promotes Endometrial Repair via Long-Term Retention and Microenvironment Modulation.

ACS Nano

January 2025

Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Gynecology & Obstetrics, Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.

Regeneration of the injured endometrium, particularly the functional layer, is crucial for the prevention of uterine infertility. At present, clinical treatment using sodium hyaluronate hydrogel injection is limited by its relatively low fluidity, short-term retention, and insufficient bioactive ingredients, so it is necessary to develop an advanced healing-promoting hydrogel. The modulation of the microenvironment by presents a bioactive component that can facilitate the regeneration of the functional layer.

View Article and Find Full Text PDF

A critical view of silk fibroin for non-viral gene therapy.

Int J Biol Macromol

January 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, PR China. Electronic address:

Exogenous genes are inserted into target cells during gene therapy in order to compensate or rectify disorders brought on by faulty or aberrant genes. However, gene therapy is still in its early stages because of its unsatisfactory therapeutic effects which are mainly due to low transfection efficiency of vectors, high toxicity, and poor target specificity. A natural polymer with numerous bioactive sites, good mechanical qualities, biodegradability, biocompatibility, and processability called silk fibroin has gained attention as a possible gene therapy vector.

View Article and Find Full Text PDF

A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.

RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.

View Article and Find Full Text PDF

Injectable supramolecular hydrogel co-loading abemaciclib/NLG919 for neoadjuvant immunotherapy of triple-negative breast cancer.

Nat Commun

January 2025

State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.

The efficacy of cancer immunotherapy relies on a sufficient amount of functional immune cells. Triple-negative breast cancer lacks enough immune cell infiltration, and adjuvant therapy is necessary to prime anti-tumor immunity. However, the improvement in efficacy is unsatisfactory with concern about inducing systemic immunotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!