A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Controlled sulfation of mixed-linkage glucan by Response Surface Methodology for the development of biologically applicable polysaccharides. | LitMetric

Controlled sulfation of mixed-linkage glucan by Response Surface Methodology for the development of biologically applicable polysaccharides.

Carbohydr Polym

Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z4, Canada. Electronic address:

Published: October 2021

Endogenous and exogenous sulfated polysaccharides exhibit potent biological activities, including inhibiting blood coagulation and protein interactions. Controlled chemical sulfation of alternative polysaccharides holds promise to overcome limited availability and heterogeneity of naturally sulfated polysaccharides. Here, we established reaction parameters for the controlled sulfation of the abundant cereal polysaccharide, mixed-linkage β(1,3)/β(1,4)-glucan (MLG), using Box-Behnken Design of Experiments (BBD) and Response Surface Methodology (RSM). The optimization of the degree-of-substitution (DS) was externally validated through the production of sulfated MLGs (S-MLGs) with observed DS and M values deviating less than 20% and 30% from the targeted values, respectively. Simultaneous optimization of DS and M resulted in the same range of deviation from the targeted value. S-MLGs with DS > 1 demonstrated a modest anticoagulation effect versus heparin, and a greater P-selectin affinity than fucoidan. As such, this work provides a route to medically important polymers from an economical agricultural polysaccharide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118275DOI Listing

Publication Analysis

Top Keywords

controlled sulfation
8
response surface
8
surface methodology
8
sulfated polysaccharides
8
sulfation mixed-linkage
4
mixed-linkage glucan
4
glucan response
4
methodology development
4
development biologically
4
biologically applicable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!