Background: During aging, hematopoietic stem cells (HSC) lose progressively both their self-renewal and differentiation potential. The precise molecular mechanisms of this phenomenon are not well established. To uncover the molecular events underlying this event, we have performed a bioinformatics analysis of 650 single-cell transcriptomes.

Methods: Single-cell transcriptome analyses of expression heterogeneity, cell cycle, and cell trajectory in human cell compartment enriched in hematopoietic stem cell compartment were investigated in the bone marrow according to the age of the donors. Identification of aging-related nodules was identified by weighted correlation network analysis in this primitive compartment.

Results: The analysis of single-cell transcriptomes allowed to uncover a major upregulation of EGR1 in human-aged lineage-CD34+CD38- cells which present cell cycle dysregulation with reduction of G2/M phase according to less expression of CCND2 during S phase. EGR1 upregulation in aging hematopoietic stem cells was found to be independent of cell cycle phases and gender. EGR1 expression trajectory in aged HSC highlighted a signature enriched in hematopoietic and immune disorders with the best induction of AP-1 complex and quiescence regulators such as EGR1, BTG2, JUNB, and NR41A. Sonic Hedgehog-related TMEM107 transmembrane molecule followed also EGR1 cell trajectory. EGR1-dependent gene weighted network analysis in human HSC-associated IER2 target protein-specific regulators of PP2A activity, IL1B, TNFSF10 ligands, and CD69, SELP membrane molecules in old HSC module with immune and leukemogenic signature. In contrast, for young HSC which were found with different cell cycle phase progression, its specific module highlighted upregulation of HIF1A hypoxic factor, PDE4B immune marker, DRAK2 (STK17B) T cell apoptosis regulator, and MYADM myeloid-associated marker.

Conclusion: EGR1 was found to be connected to the aging of human HSC and highlighted a specific cell trajectory contributing to the dysregulation of an inflammatory and leukemia-related transcriptional program in aged human HSCs. EGR1 and its program were found to be connected to the aging of human HSC with dissociation of quiescence property and cell cycle phase progression in this primitive hematopoietic compartment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296523PMC
http://dx.doi.org/10.1186/s13287-021-02498-0DOI Listing

Publication Analysis

Top Keywords

cell cycle
20
cell trajectory
16
hematopoietic stem
16
cell
12
stem cells
12
egr1
8
cells hsc
8
aging hematopoietic
8
cell compartment
8
enriched hematopoietic
8

Similar Publications

Background: Dysbiosis of the lung microbiome can contribute to the initiation and progression of lung cancer. Synchronous multiple primary lung cancer (sMPLC) is an increasingly recognized subtype of lung cancer characterized by high morbidity, difficulties in early detection, poor prognosis, and substantial clinical challenges. However, the relationship between sMPLC pathogenesis and changes in the lung microbiome remains unclear.

View Article and Find Full Text PDF

Identification of crucial pathways and genes linked to endoplasmic reticulum stress in PCOS through combined bioinformatic analysis.

Front Mol Biosci

January 2025

Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.

Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic condition impacting millions of women worldwide. This study sought to identify granulosa cell endoplasmic reticulum stress (GCERS)-related differentially expressed genes (DEGs) between women with PCOS and those without PCOS using bioinformatics and to investigate the related molecular mechanisms.

Methods: Two datasets were downloaded from GEO and analysed using the limma package to identify DEGs in two groups-PCOS and normal granulosa cells.

View Article and Find Full Text PDF

Background And Aim: L. has been used medicinally and traditionally since antiquity. This study sought to examine the ethanolic extract (ASEE) in inducing apoptosis in human triple-negative breast cancer (TNBC) MDA-MB-231 cells and the molecular interactions of the identified components with cell death markers using method.

View Article and Find Full Text PDF

Cannabidiol suppresses proliferation and induces cell death, autophagy and senescence in human cholangiocarcinoma cells via the PI3K/AKT/mTOR pathway.

J Tradit Complement Med

November 2024

Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.

Background And Aim: Cholangiocarcinoma (CCA) is usually diagnosed at a late stage, leading to treatment failure. Cannabidiol (CBD), exhibits diverse anti-cancer effects in various cancers, offering avenues for improving CCA treatment. This study investigated the effects of CBD on human CCA cells and the underlying mechanisms and .

View Article and Find Full Text PDF

Novel thiazole analogs 3a, 3b, 4, 5, 6a-g, 8a, 8b, 9a-c, 10a-d and 11 were designed and synthesized as molecular mimetics of sunitinib. antitumor activity of the obtained compounds was investigated against HepG2, HCT-116, MCF-7, HeP-2 and HeLa cancer cell lines. The obtained data showed that compounds 3b and 10c are the most potent members toward HepG2, HCT-116, MCF-7 and HeLa cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!