Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) are promising candidates for tissue regeneration therapy. However, the therapeutic efficacy of MSC-EVs for meniscus regeneration is uncertain, and the mechanisms underlying MSC-EV-mediated tissue regeneration have not been fully elucidated. The aims of this study were to evaluate the therapeutic efficacy of intra-articular MSC-EV injection in a meniscus defect model and elucidate the mechanism underlying MSC-EV-mediated tissue regeneration via combined bioinformatic analyses.
Methods: MSC-EVs were isolated from human synovial MSC culture supernatants via ultrafiltration. To evaluate the meniscus regeneration ability, MSC-EVs were injected intra-articularly in the mouse meniscus defect model immediately after meniscus resection and weekly thereafter. After 1 and 3 weeks, their knees were excised for histological and immunohistochemical evaluations. To investigate the mechanisms through which MSC-EVs accelerate meniscus regeneration, cell growth, migration, and chondrogenesis assays were performed using treated and untreated chondrocytes and synovial MSCs with or without MSC-EVs. RNA sequencing assessed the gene expression profile of chondrocytes stimulated by MSC-EVs. Antagonists of the human chemokine CXCR2 receptor (SB265610) were used to determine the role of CXCR2 on chondrocyte cell growth and migration induced by MSC-EVs.
Results: In the meniscus defect model, MSC-EV injection accelerated meniscus regeneration and normalized the morphology and composition of the repaired tissue. MSC-EVs stimulated chondrocyte and synovial MSC cell growth and migration. RNA sequencing revealed that MSC-EVs induced 168 differentially expressed genes in the chondrocytes and significantly upregulated CXCL5 and CXCL6 in chondrocytes and synovial MSCs. Suppression of CXCL5 and CXCL6 and antagonism of the CXCR2 receptor binding CXCL5 and CXCL6 negated the influence of MSC-EVs on chondrocyte cell growth and migration.
Conclusions: Intra-articular MSC-EV administration repaired meniscus defects and augmented chondrocyte and synovial MSC cell growth and migration. Comprehensive transcriptome/RNA sequencing data confirmed that MSC-EVs upregulated CXCL5 and CXCL6 in chondrocytes and mediated the cell growth and migration of these cells via the CXCR2 axis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296733 | PMC |
http://dx.doi.org/10.1186/s13287-021-02481-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!