Enhancing robustness of activated sludge with Aspergillus tubingensis as a protective backbone structure under high-salinity stress.

J Environ Manage

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing, 100029, People's Republic of China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029, People's Republic of China; Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China. Electronic address:

Published: November 2021

High salt seriously destroys the stable interactions among key functional species of activated sludge, which in turn limits the performance of high-salinity wastewater biological treatment. In this study, pelletized Aspergillus tubingensis (AT) was used as a protective backbone structure for activated sludge under high-salinity stress, and a superior salt-tolerant AT-based aerobic granular sludge (AT-AGS) was developed. Results showed that the COD and NH-N removal efficiencies of salt-domesticated AT-AGS were 11.83% and 7.18% higher than those of salt-domesticated flocculent activated sludge (FAS) at 50 gNaCl/L salinity. Compared to the salt-domesticated FAS, salt-domesticated AT-AGS showed stronger biomass retention capacity (with a MLVSS concentration of 7.92 g/L) and higher metabolic activity (with a dehydrogenase activity of 48.06 mgTF/gVSS·h). AT modified the extracellular polymeric substances pattern of microbes, and the total extracellular polysaccharide content of AT-AGS (80.7 mg/gVSS) was nearly twice than that of FAS (46.3 mg/gVSS) after salt-domestication, which demonstrated that extracellular polysaccharide played a key role in keeping the system stable. The high-throughput sequencing analysis illustrated that AT contributed to maintain the microbial richness and diversity of AT-AGS in high-salt environment, and Marinobacterium (with a relative abundance of 32.04%) became the most predominant genus in salt-tolerant AT-AGS. This study provided a novel insight into enhancing the robustness of activated sludge under high-salinity stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.113302DOI Listing

Publication Analysis

Top Keywords

activated sludge
20
high-salinity stress
12
enhancing robustness
8
robustness activated
8
aspergillus tubingensis
8
tubingensis protective
8
protective backbone
8
backbone structure
8
sludge high-salinity
8
salt-domesticated at-ags
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!