Little is known about how perceived gaze direction and head orientation may influence human categorization of visual stimuli as faces. To address this question, a sequence of unsegmented natural images, each containing a random face or a non-face object, was presented in rapid succession (stimulus duration: 91.7 ms per image) during which human observers were instructed to respond immediately to every face presentation. Faces differed in gaze and head orientation in 7 combinations - full-front views with perceived gaze (1) directed to the observer, (2) averted to the left, or (3) averted to the right, left ¾ side views with (4) direct gaze or (5) averted gaze, and right ¾ side views with (6) direct gaze or (7) averted gaze - were presented randomly throughout the sequence. We found highly accurate and rapid behavioural responses to all kinds of faces. Crucially, both perceived gaze direction and head orientation had comparable, non-interactive effects on response times, where direct gaze was responded faster than averted gaze by 48 ms and full-front view faster than ¾ side view also by 48 ms on average. Presentations of full-front faces with direct gaze led to an additive speed advantage of 96 ms to ¾ faces with averted gaze. The results reveal that the effects of perceived gaze direction and head orientation on the speed of face categorization probably depend on the degree of social relevance of the face to the viewer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2021.05.012DOI Listing

Publication Analysis

Top Keywords

head orientation
20
perceived gaze
16
direct gaze
16
averted gaze
16
gaze
13
gaze direction
12
direction head
12
gaze head
8
face categorization
8
averted left
8

Similar Publications

The Importance of Frailty in Older Adults With Benign Paroxysmal Positioning Vertigo.

J Neurol Phys Ther

November 2024

Faculty of Rehabilitation Sciences, REVAL-Rehabilitation Research Centre, Hasselt University, Hasselt Diepenbeek, Limburg, Belgium (S.P., P.M., J.S.); Department of Otorhinolaryngology and Head & Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Centre, The Netherlands (S.P., R.V.D.B); Department of Otorhinolaryngology, Head and Neck Surgery ZOL Hospital, Belgium (N.L., W.L.); and Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands (K.M.).

Background And Purpose: Even though Benign Paroxysmal Positioning Vertigo (BPPV) is one of the most reported vestibular disorders, its interaction with frailty and postural control in older adults is hardly or not investigated.

Methods: Thirty-seven older adults (≥65 years) with a diagnosis of BPPV (oaBPPV) (mean age 73.13 (4.

View Article and Find Full Text PDF

3D Scanning of Surgical Specimens to Improve Communication Between Surgeon and Pathologist: A Head and Neck Pilot Study.

Cancers (Basel)

December 2024

Department of Medical and Surgical Specialities, Radiological Sciences and Public Health (DSMC), University of Brescia, 25123 Brescia, Italy.

Successful surgical outcomes in head and neck cancer depend on the accurate identification of resection margins. Effective communication between surgeons and pathologists is critical, but is often jeopardised by challenges in sampling and orienting anatomically complex specimens. This pilot study aims to evaluate the use of 3D scanning of surgical specimens as a tool to improve communication and optimise the pathology sampling process.

View Article and Find Full Text PDF

The integration of different sensory streams is required to dynamically estimate how our head and body are oriented and moving relative to gravity. This process is essential to continuously maintain stable postural control, autonomic regulation, and self-motion perception. The nodulus/uvula (NU) in the posterior cerebellar vermis is known to integrate canal and otolith vestibular input to signal angular and linear head motion in relation to gravity.

View Article and Find Full Text PDF

Two experimental methods to integrate intra-oral scans into 3D stereophotogrammetric facial images.

Clin Oral Investig

January 2025

Department of Dentistry Section Orthodontics and Craniofacial Biology, Radboud University Medical Center, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands.

Objectives: For this research two different ways for integrating intra-oral scans into three-dimensional (3D) stereophotogrammetric images are analyzed and compared to the gold standard method.

Materials And Methods: A cross-sectional study was performed. For each patient a complete dataset was collected, which was used to generate 3D fusion models by three different methods: method A using cheek retractors, method B using a tracer and method C using full-skull CBCT.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the histological and ultrastructural features of the elastic cartilage at the tip of the vocal process in the arytenoid cartilage, which is essential for laryngeal biomechanics.

Methods: Five larynges, including the vocal folds and epiglottis, were examined using transmission electron microscopy. The elastic cartilage at the tip of the vocal process was compared to the epiglottic cartilage within the same larynx to elucidate structural differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!