Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709694PMC
http://dx.doi.org/10.1016/j.brs.2021.07.007DOI Listing

Publication Analysis

Top Keywords

effects anesthetic
4
anesthetic change
4
change electrographic
4
electrographic seizure
4
seizure duration
4
duration electroconvulsive
4
electroconvulsive therapy
4
effects
1
change
1
electrographic
1

Similar Publications

This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).

View Article and Find Full Text PDF

Objective: Laparoscopic cholecystectomy is a common procedure for gallbladder diseases, but many patients experience shoulder pain due to pneumoperitoneum. This study investigates the comparative effectiveness of warm carbon dioxide gas insufflation versus local heat application in reducing shoulder pain after laparoscopic cholecystectomy. We also examined changes in body temperature during surgery and postoperative shivering in the intervention and control groups.

View Article and Find Full Text PDF

This investigation represents a pioneering effort to examine the therapeutic effects of PCB specifically in the context of CFA-induced mice, as well as to elucidate the underlying mechanisms that facilitate such effects. Our study utilized advanced methodologies, namely high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS)-based metabolomics, alongside comprehensive multivariate data analysis, to identify a distinctive metabolic profile associated with acute inflammation. Through our analyses, we discovered that several potential metabolites were significantly implicated in a variety of critical metabolic pathways.

View Article and Find Full Text PDF

Danshensu enhances autophagy and reduces inflammation by downregulating TNF-α to inhibit the NF-κB signaling pathway in ischemic flaps.

Phytomedicine

January 2025

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China, ; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China. Electronic address:

Background: The significant distal necrosis of the random-pattern skin flaps greatly restricts their clinical applications in flap transplantation. Previous studies have demonstrated the potential of danshensu (DSS) to alleviate ischemic tissue injury. However, no research to date has confirmed whether DSS can improve the survival of ischemic flaps.

View Article and Find Full Text PDF

d-Limonene inhibits cytokines and chemokines expression by regulating NF-kappaB and STAT in HaCat cells and DNCB-induced atopic dermatitis in BALB/c mice.

Int Immunopharmacol

January 2025

School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. Electronic address:

Background: Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by itching and redness, affecting individuals of all ages and significantly impairing their quality of life. The prevalence of AD is rising, posing serious health concern. Relief of itching is a primary treatment objective; however, steroid treatments can lead to adverse effects, including skin barrier thinning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!