Metabolic abnormalities substantially increase the risk of noncommunicable diseases, which are among the leading causes of mortality globally. Mitigating and preventing these adverse consequences remains challenging due to a limited understanding of metabolic health. Metabolic flexibility, a key tenet of metabolic health, encompasses the responsiveness of interrelated pathways to maintain energy homeostasis throughout daily physiologic challenges, such as the response to meal challenges. One critical underlying research gap concerns the measurement of postprandial metabolic flexibility, which remains incompletely understood. We concisely review the methodology for assessment of postprandial metabolic flexibility in recent human studies. We identify 3 commonalities of study design, specifically the nature of the challenge, nature of the response measured, and approach to data analysis. Primary interventions were acute short-term nutrition challenges, including single- and multiple-macronutrient tolerance tests. Postmeal challenge responses were measured via laboratory assays and instrumentation, based on a diverse set of metabolic flexibility indicators [e.g., energy expenditure (whole-body indirect calorimetry), glucose and insulin kinetics, metabolomics, transcriptomics]. Common standard approaches have been diabetes-centric with single-macronutrient challenges (oral-glucose-tolerance test) to characterize the postprandial response based on glucose and insulin metabolism; or broad measurements of energy expenditure with calculated macronutrient oxidation via indirect calorimetry. Recent methodological advances have included the use of multiple-macronutrient meal challenges that are more representative of physiologic meals consumed by free-living humans, combinatorial approaches for assays and instruments, evaluation of other metabolic flexibility indicators via precision health, systems biology, and temporal perspectives. Omics studies have identified potential novel indicators of metabolic flexibility, which provide greater granularity to prior evidence from canonical approaches. In summary, recent findings indicate the potential for an expanded understanding of postprandial metabolic flexibility, based on nonclassical measurements and methodology, which could represent novel dynamic indicators of metabolic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8562077 | PMC |
http://dx.doi.org/10.1093/jn/nxab263 | DOI Listing |
Cytochromes P450 (CYP) form one of the largest enzyme superfamilies on Earth, with similar structural fold but biological functions varying from synthesis of physiologically essential compounds to metabolism of myriad xenobiotics. Here we determined the crystal structures of Coryphaenoides armatus and human sterol 14α-demethylases (CYP51s). Both structures reveal elements that imply elevated conformational flexibility, uncovering molecular basis for faster catalytic rates, lower substrate selectivity, and resistance to inhibition.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.
A pasting-3D microfluidic paper-based analytical device (P-3D μPAD) was developed. It enabled an efficient cascade reaction between urate oxidase (UOX) and Fe/Pt-doped carbon nanoparticles (Fe/Pt-CNPs) for visual colorimetric detection of uric acid (UA). The novel Fe/Pt-CNP nanozyme performed high peroxidase-like activity toward 3,3',5,5'-tetramethylbenzidine (TMB) and HO with Michaelis - Menten constants (K) of 0.
View Article and Find Full Text PDFBMC Med Res Methodol
December 2024
Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, 180 Madison Avenue, New York, NY, USA.
Background: In cohort studies with time-to-event outcomes, covariates of interest often have values that change over time. The classical Cox regression model can handle time-dependent covariates but assumes linear effects on the log hazard function, which can be limiting in practice. Furthermore, when multiple correlated covariates are studied, it is of great interest to model their joint effects by allowing a flexible functional form and to delineate their relative contributions to survival risk.
View Article and Find Full Text PDFJ Pharm Sci
December 2024
Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois, 60064, United States.
Biopharmaceutical companies generate a wealth of data, ranging from in silico physicochemical properties and machine learning models to both low and high-throughput in vitro assays and in vivo studies. To effectively harnesses this extensive data, we introduce a statistical methodology facilitated by Accuracy, Utility, and Rank Order Assessment (AURA), which combines basic statistical analyses with dynamic data visualizations to evaluate endpoint effectiveness in predicting intestinal absorption. We demonstrated that various physicochemical properties uniquely influence intestinal absorption on a project-specific basis, considering factors like intestinal efflux, passive permeability, and clearance.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Fluorescence correlation spectroscopy (FCS) enables the measurement of fluctuations at fast timescales (typically few nanoseconds) and with high spatial resolution (tens of nanometers). This single-molecule measurement has been used to characterize single-molecule transport and flexibility of polymers and biomolecules such as DNA and RNA. Here, we apply this technique as dual-color fluorescence cross-correlation spectroscopy (dcFCCS) to identify the motor function of the tethering protein EEA1 and the small GTPase Rab5 by probing the flexibility changes through end-monomer fluctuations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!