Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While establishing worldwide collective immunity with anti SARS-CoV-2 vaccines, COVID-19 remains a major health issue with dramatic ensuing economic consequences. In the transition, repurposing existing drugs remains the fastest cost-effective approach to alleviate the burden on health services, most particularly by reducing the incidence of the acute respiratory distress syndrome associated with severe COVID-19. We undertook a computational repurposing approach to identify candidate therapeutic drugs to control progression towards severe airways inflammation during COVID-19. Molecular profiling data were obtained from public sources regarding SARS-CoV-2 infected epithelial or endothelial cells, immune dysregulations associated with severe COVID-19 and lung inflammation induced by other respiratory viruses. From these data, we generated a protein-protein interactome modeling the evolution of lung inflammation during COVID-19 from inception to an established cytokine release syndrome. This predictive model assembling severe COVID-19-related proteins supports a role for known contributors to the cytokine storm such as IL1β, IL6, TNFα, JAK2, but also less prominent actors such as IL17, IL23 and C5a. Importantly our analysis points out to alarmins such as TSLP, IL33, members of the S100 family and their receptors (ST2, RAGE) as targets of major therapeutic interest. By evaluating the network-based distances between severe COVID-19-related proteins and known drug targets, network computing identified drugs which could be repurposed to prevent or slow down progression towards severe airways inflammation. This analysis confirmed the interest of dexamethasone, JAK2 inhibitors, estrogens and further identified various drugs either available or in development interacting with the aforementioned targets. We most particularly recommend considering various inhibitors of alarmins or their receptors, currently receiving little attention in this indication, as candidate treatments for severe COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297899 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254374 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!