Anecdotal evidence suggests that spontaneous alcoholic fermentation of grape juice is becoming a more popular option in global wine production. Wines produced from the same grape juice by inoculation or spontaneous fermentation usually present distinct chemical and sensorial profiles. Inoculation has been associated with more similar end-products, a loss of typicity, and lower aroma complexity, and it has been suggested that this may be linked to suppression of the local or regional wine microbial ecosystems responsible for spontaneous fermentations. However, whether inoculated fermentations of different juices from different regions really end up with a narrower, less diverse chemical profile than those of spontaneously fermented juices has never been properly investigated. To address this question, we used grape juice from three different varieties, Grüner Veltliner (white), Zweigelt (red), and Pinot noir (red), originating from different regions in Austria to compare spontaneous and single active dry yeast strains inoculated fermentations of the same grape samples. The chemical analysis covered primary metabolites such as glycerol, ethanol and organic acids, and volatile secondary metabolites, including more than 40 major and minor esters, as well as higher alcohols and volatile fatty acids, allowing an in depth statistical evaluation of differences between fermentation strategies. The fungal (mainly yeast) communities throughout fermentations were monitored using automated ribosomal intergenic spacer analysis. The data provide evidence that inoculation with single active dry yeast strains limits the diversity of the chemical fingerprints. The fungal community profiles clearly show that inoculation had an effect on fermentation dynamics and resulted in chemically less diverse wines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297920 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254919 | PLOS |
Sci Rep
December 2024
College of Biological Sciences and Technology, YiLi Normal University, Yining, 835000, People's Republic of China.
Ice wine is produced from concentrated grape juice obtained by the natural freezing and pressing of grapes. The high sugar content of this juice has an impact on fermentation. To investigate the impact of the initial sugar concentration on the fermentation of ice wine, the initial sugar concentration of Vidal ice grape juice was adjusted to 370, 450, 500 and 550 g/L by the addition of glucose.
View Article and Find Full Text PDFFood Chem
December 2024
College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350007, China. Electronic address:
Organic acids play a crucial role in determining the quality of grapes and their derived products, such as wine and juice. Despite their critical role in grapevine physiology and fruit quality, limited research has investigated the distribution of these acids within grape plants. This study employed desorption electrospray ionization (DESI) imaging to rapidly profile and image key organic acids across various grape tissues.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan.
Grapes have been widely used for dietary ailments due to their attributed pharmacological activities. Resveratrol, the chief constituent of grapes, is responsible for their pharmacological benefits. However, apart from their beneficial effects, grapes have also recently been considered in drug interaction studies.
View Article and Find Full Text PDFFEMS Yeast Res
December 2024
School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany.
Pectinolytic enzymes secreted by yeasts have an untapped potential in industry, particularly in wine-making. This study addresses the limitations of the current screening methods in reliably predicting the capacity of pectinolytic yeast strains to secrete polygalacturonase (PGase) under industrial conditions, suggesting a novel screening approach. Using the context of wine-making as an example, a diverse collection of 512 yeast strains from 17 species was analyzed for PGase secretion, a key enzyme in pectinolysis.
View Article and Find Full Text PDFFoods
December 2024
Institution of Fruit Technology Guidance of Guangxi Zhuang Autonomous Region, Nanning 530022, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!